$$ \begin{cases} t_1 = \text{Rock is Top of Building}\\ t_2 = \text{Rock is High Point}\\ \end{cases} $$ $$\begin{cases} t_1=1.5\ut{s}\\ t_2=2.5\ut{s}\\ x_0 = 0 \\ x_1 = h \\ v_0 > 0 \\ a=-g = -9.80665\ut{m/s^2}\\ \end{cases} $$ $$ h=?$$ $$ \Delta x = vt-\frac{1}{2}at^2,$$ $$ \begin{aligned} \Delta x_{0\to2} &= v_2t_{0\to2}-\frac{1}{2}(-g)t_{0\to2}^2\\ (x_2-x_0) &= v_2(t_2-t_0)+\frac{1}{2}gt(t_2..