10판/2. 직선운동

2-57 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 1. 14:00

{t1=Contact Start Floort2=Contact End Floort3=ReUprising HighPoint \begin{cases} t_1 = \text{Contact Start Floor}\\ t_2 = \text{Contact End Floor}\\ t_3 = \text{ReUprising HighPoint}\\ \end{cases} t12=12.0[ms]=12.0[ms]1[s]1000[ms]=3250[s] \begin{aligned} t_{1\to2} &= 12.0\ut{ms}\\ &= 12.0\ut{ms}\cdot\frac{1\ut{s}}{1000\ut{ms}}\\ &= \frac{3}{250}\ut{s}\\ \end{aligned} {x0=4.00[m]x3=2.00[m]x1=x2=0v0=v3=0t12=3250[s]a=g=9.80665[m/s2]\begin{cases} x_0 = 4.00\ut{m}\\ x_3 = 2.00\ut{m}\\ x_1 = x_2 = 0\\ v_0 = v_3 = 0\\ t_{1\to2} = \frac{3}{250}\ut{s}\\ a=-g = -9.80665\ut{m/s^2}\\ \end{cases}
(a) aˉ12=?\bar a_{1\to2}=? 2aΔx=v2v02, 2a\Delta x = v^2-v_0^2, 2(g)Δx01=v12v02, 2(-g)\Delta x_{0\to1} = v_1^2-v_0^2, v12=2(g)(x1x0)+v02v1=±2(g)(0x0)+02 \begin{aligned} v_1^2 &= 2(-g)(x_1-x_0) + v_0^2\\ v_1 &= \pm\sqrt{2(-g)(0-x_0) + 0^2}\\ \end{aligned} v1=2gx0(v1<0)\therefore v_1 = -\sqrt{2gx_0}(\because v_1<0) 2aΔx=v2v02, 2a\Delta x = v^2-v_0^2, 2(g)Δx23=v32v22, 2(-g)\Delta x_{2\to3} = v_3^2-v_2^2, v22=v322(g)(x3x2)v2=±022(g)(x30) \begin{aligned} v_2^2 &= v_3^2-2(-g)(x_3-x_2)\\ v_2 = &\pm\sqrt{0^2-2(-g)(x_3-0)}\\ \end{aligned} v2=2gx3(v2>0)\therefore v_2 = \sqrt{2gx_3}(\because v_2>0) aˉ12=v2v1Δt12=2gx3(2gx0)Δt12=2g(x3+x0)Δt12=2(9.80665[m/s2])(2.00[m]+4.00[m])3250[s]=56196133(2+2)[m/s2]1260.041278676706[m/s2]1.26[km/s2] \begin{aligned} \bar a_{1\to2} &= \frac{v_2-v_1}{\Delta t_{1\to2}}\\ &= \frac{\sqrt{2gx_3}-\(-\sqrt{2gx_0}\)}{\Delta t_{1\to2}}\\ &= \frac{\sqrt{2g}\(\sqrt{x_3}+\sqrt{x_0}\)}{\Delta t_{1\to2}}\\ &= \frac{\sqrt{2(9.80665\ut{m/s^2})}\(\sqrt{2.00\ut{m}}+\sqrt{4.00\ut{m}}\)}{\frac{3}{250}\ut{s}}\\ &=\frac{5}{6} \sqrt{196133} \left(2+\sqrt{2}\right)\ut{m/s^2}\\ &\approx 1260.041278676706\ut{m/s^2}\\ &\approx 1.26\ut{km/s^2} \end{aligned}
(b) Up Direction\text{Up Direction}