10판/2. 직선운동

2-58 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 8. 1. 21:53

{t1=Landing Before 1 secondt2=Landing \begin{cases} t_1 = \text{Landing Before 1 second}\\ t_2 = \text{Landing}\\ \end{cases} {t12=1[s]x0=hx1=0.6hx2=0v0=0a=g=9.80665[m/s2]\begin{cases} t_{1\to2} = 1\ut{s}\\ x_0 = h\\ x_1 = 0.6h\\ x_2 = 0\\ v_0 = 0\\ a=-g = -9.80665\ut{m/s^2}\\ \end{cases} t2t1=1[s], t_2-t_1 = 1\ut{s}, t1=t21[s] \therefore t_1 = t_2-1\ut{s} Δx=v0t+12at2,\Delta x = v_0t+\frac{1}{2}at^2, [Make System of Equations]\title{Make System of Equations} {Δx01=v0t01+12at012Δx02=v0t02+12at022\begin{cases} \Delta x_{0\to1} &= v_0t_{0\to1}+\frac{1}{2}at_{0\to1}^2\\ \Delta x_{0\to2} &= v_0t_{0\to2}+\frac{1}{2}at_{0\to2}^2\\ \end{cases} {x1x0=12(g)t12x2x0=12(g)t22\begin{cases} x_1-x_0 &= \frac{1}{2}(-g)t_1^2\\ x_2-x_0 &= \frac{1}{2}(-g)t_2^2\\ \end{cases} {0.6hh=12g(t21[s])2h=12gt22\begin{cases} 0.6h-h &= -\frac{1}{2}g(t_2-1\ut{s})^2\\ -h &= -\frac{1}{2}gt_2^2\\ \end{cases} {0.4hx=12g(t2y1[s])2hx=12gt2y2\begin{cases} 0.4\underset{x}{h} &= \frac{1}{2}g(\underset{y}{t_2}-1\ut{s})^2\\ \underset{x}{h} &= \frac{1}{2}g\underset{y}{t_2}^2\\ \end{cases} (Underset x,y Means Unknown Value)\text{(Underset x,y Means Unknown Value)} t2=13(5±10) t_2=\frac{1}{3} \left(5\pm\sqrt{10}\right) h=518(7±210)g=518(7±10)(9.80665)[m]=196133(7±210)72000[m] \begin{aligned} h&=\frac{5}{18} \left(7\pm2 \sqrt{10}\right) g\\ &=\frac{5}{18} \left(7\pm \sqrt{10}\right) (9.80665)\ut{m}\\ &=\frac{196133 \left(7\pm2 \sqrt{10}\right)}{72000}\ut{m}\\ \end{aligned}
(a) t02=?t_{0\to2}=? t2+=13(5+10)[s]2.720759220056126[s]3[s]t2=13(510)[s]0.6125741132772068[s]1[s] \begin{aligned} t_{2+}&=\frac{1}{3} \left(5+\sqrt{10}\right)\ut{s}\\ &\approx 2.720759220056126\ut{s}\\ &\approx 3\ut{s}\\ t_{2-}&=\frac{1}{3} \left(5-\sqrt{10}\right)\ut{s}\\ &\approx 0.6125741132772068\ut{s}\\ &\approx 1\ut{s}\\ \end{aligned} t23[s] \therefore t_2\approx 3\ut{s}
(b) h=?h=? h+=196133(7+210)72000[m]36.29701400893902[m]40[m]h=196133(7210)72000[m]1.8399582132832[m]2[m] \begin{aligned} h_+&=\frac{196133 \left(7+2 \sqrt{10}\right)}{72000}\ut{m}\\ &\approx 36.29701400893902\ut{m}\\ &\approx 40\ut{m}\\ h_-&=\frac{196133 \left(7-2 \sqrt{10}\right)}{72000}\ut{m}\\ &\approx 1.8399582132832\ut{m}\\ &\approx 2\ut{m}\\ \end{aligned} h40[m] \therefore h\approx 40\ut{m}
(c) 마지막 1초동안 낙하해야 하므로 전체 낙하시간은 1초를 초과해야 한다.