분류 전체보기 900

3-5 할리데이 10판 솔루션 일반물리학

{a1=3.66j^[m]a2:(1.83[m],π4)a3:(0.91[m],34π)\begin{cases} \vec a_1 = 3.66\hat j\ut{m}\\ \vec a_2:(1.83\ut{m},-\frac{\pi}{4})\\ \vec a_3:(0.91\ut{m},-\frac{3}{4}\pi)\\ \end{cases} a2=1.83cos(π4)i^+1.83sin(π4)j^=1.832i^1.832j^ \begin{aligned} \vec a_2 &= 1.83\cos\(-\frac{\pi}{4}\)\hat i+1.83\sin\(-\frac{\pi}{4}\)\hat j\\ &= \frac{1.83}{\sqrt{2}}\hat i-\frac{1.83}{\sqrt{2}}\hat j\\ \end{aligned} $$ \begin{aligned} \vec a_3 &= 0.91\cos\(-\frac{3}{4}\pi\)\hat i+0.91\sin\(-\frac..

10판/3. 벡터 2019.08.06

3-4 할리데이 10판 솔루션 일반물리학

(a) 20.0° 20.0=20.0π[rad]180=π9[rad]0.349[rad] 20.0^\circ =20.0^\circ \cdot \frac{\pi\ut{rad}}{180^\circ}=\frac{\pi}{9}\ut{rad}\approx0.349\ut{rad} (b) 50.0° 50.0=50.0π[rad]180=518π[rad]0.873[rad] 50.0^\circ =50.0^\circ \cdot \frac{\pi\ut{rad}}{180^\circ}=\frac{5}{18}\pi\ut{rad}\approx0.873\ut{rad} (c) 100° 100=100π[rad]180=59π[rad]1.75[rad] 100^\circ =100^\circ \cdot \frac{\pi\ut{rad}}{180^\circ}=\frac{5}{9}\pi\ut{rad}\approx1.75\ut{rad} (d) 0.330 rad $$ 0.330\ut{rad} = 0.330\ut{rad} \cdo..

10판/3. 벡터 2019.08.06

3-2 할리데이 10판 솔루션 일반물리학

{r:(12[m],30)r=rxi^+ryj^\begin{cases} \vec r:(12\ut{m},30^\circ)\\ \vec r =r_x \hat i+ r_y \hat j\\ \end{cases} (a)rx=?r_x=? rx=rcosθ=12cos30[m]=63[m] \begin{aligned} r_x&=r\cos\theta\\ &=12\cos30^\circ\ut{m}\\ &=6\sqrt{3}\ut{m} \end{aligned} (a)ry=?r_y=? rx=rsinθ=12sin30[m]=6[m] \begin{aligned} r_x&=r\sin\theta\\ &=12\sin30^\circ\ut{m}\\ &=6\ut{m} \end{aligned}

10판/3. 벡터 2019.08.06

3-1 할리데이 10판 솔루션 일반물리학

{a=axi^+ayj^a:(a,θ)ax=12a\begin{cases} \vec a =a_x \hat i+ a_y \hat j\\ \vec a:(a,\theta)\\ a_x=\frac{1}{2}a\\ \end{cases} tanθ=? \tan\theta = ? ax=acosθ=12aa_x=a\cos\theta=\frac{1}{2}a cosθ=12 \cos\theta=\frac{1}{2} θ=π3 \theta = \frac{\pi}{3} tanθ=tanπ3=3 \therefore \tan\theta = \tan\frac{\pi}{3}=\sqrt{3}

10판/3. 벡터 2019.08.06

2-70 할리데이 10판 솔루션 일반물리학

{Particle 1=AParticle 2=B\begin{cases} \text{Particle 1}=A\\ \text{Particle 2}=B\\ \end{cases} {xA=6.00t2+3.00t+2.00aB=8.00tvB(0)=15[m/s]\begin{cases} x_A=6 .00t^2 + 3 .00t + 2.00\\ a_B=-8.00t\\ v_B(0)=15\ut{m/s}\\ \end{cases} vA(k)=vB(k)=? v_A(k)=v_B(k) =? vA(t)=x˙A= ⁣dxA ⁣dt= ⁣d ⁣dt(6.00t2+3.00t+2.00)=12t+3 \begin{aligned} v_A(t)&=\dot{x}_A=\dxt{x_A}\\ &=\dt(6 .00t^2 + 3 .00t + 2.00)\\ &=12t+3 \end{aligned} $$ \begin{aligned} v_B(t)&=\int_0^ta\dd t\\ &=\int(-8.00t)\dd t\\ &=-4t^2+C\\ &=-4t^2+15 \ (\becau..

2-69 할리데이 10판 솔루션 일반물리학

x(16)x(0)=? x(16)-x(0) =? Ans=016v ⁣dt=02v ⁣dt+210v ⁣dt+1012v ⁣dt+1216v ⁣dt=1228+88+122(8+4)+44=100[m] \begin{aligned} \Ans &= \int_0^{16}v\dd t\\ &= \int_0^2v\dd t+\int_2^{10}v\dd t+\int_{10}^{12}v\dd t+\int_{12}^{16}v\dd t\\ &=\frac{1}{2} \cdot 2 \cdot 8 + 8 \cdot 8+\frac{1}{2} \cdot 2 \cdot (8+4)+4\cdot4\\ &= 100\ut{m} \end{aligned}

2-68 할리데이 10판 솔루션 일반물리학

v(40)=? v(40) =? Ans=0401000a ⁣dt=101000201000a ⁣dt+201000301000a ⁣dt+301000401000a ⁣dt=120.01100+120.01(100+400)+120.01400=5[m/s] \begin{aligned} \Ans &= \int_0^{\frac{40}{1000}}a\dd t\\ &= \int_{\frac{10}{1000}}^{\frac{20}{1000}}a\dd t+\int_{\frac{20}{1000}}^{\frac{30}{1000}}a\dd t+\int_{\frac{30}{1000}}^{\frac{40}{1000}}a\dd t\\ &=\frac{1}{2}\cdot0.01\cdot100+\frac{1}{2}\cdot0.01\cdot(100+400)+\frac{1}{2}\cdot0.01\cdot400\\ &=5\ut{m/s} \end{aligned}

2-67 할리데이 10판 솔루션 일반물리학

{A=No HelmatB=Helmat\begin{cases} A = \text{No Helmat}\\ B = \text{Helmat}\\ \end{cases} maxvAmaxvB=? \abs{\max v_A -\max v_B} =? $$ \begin{aligned} \Ans =&\max v_A -\max v_B \ (\because v_A > v_B)\\ =&v_A(0.007) - v_B(0.007) \ (\because a_A,a_B>0)\\ =&\int_0^{0.007}a_A\dd t-\int_0^{0.007}a_B\dd t\\ =&\(\int_0^{0.002}a_A\dd t+\int_{0.002}^{0.004}a_A\dd t+\int_{0.004}^{0.006}a_A\dd t+\int_{0.006}^{0.007}a_A\dd t\)\\ &-..

2-66 할리데이 10판 솔루션 일반물리학

(풀이자주:문제에 있는 vs=8.0[m]v_s=8.0\ut{m}는 오타로 추정됩니다. 아마 (m/s)를 의도한 것으로 보입니다.) {v(0)=0v(10)=2.0[m/s]v(50)=4.0[m/s]\begin{cases} v(0)=0\\ v(10)=2.0\ut{m/s}\\ v(50)=4.0\ut{m/s}\\ \end{cases} (a)Δx050=?\Delta x_{0\to50}=? $$ \begin{aligned} x(50)-x(0)&=\int^{\frac{50}{1000}}_{0}v\dd t\\ &=\int_{0}^{\frac{10}{1000}}v\dd t+\int_{\frac{10}{1000}}^{\frac{50}{1000}}v\dd t\\ &=\frac{1}{2}\cdot \frac{10}{1000} \cdot 2 + \frac{1}{2} \cdot \frac{40}{1000..