11판/11. 굴림운동, 토크, 각운동량

11-58 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 6. 16. 19:35

{r:rods:squareh:hoop \begin{cases} r:\text{rod}\\ s:\text{square}\\ h:\text{hoop} \end{cases} (풀이자주:풀이에 수직축 정리 및 도형의 회전관성이 필요합니다. 관련한 내용은 별도의 링크로 분리했습니다. 해당 내용에 관한 이해는 현재과정에서의 필수는 아니니 결론만 보고 건너뛰어도 무방합니다.)

https://solutionpia.tistory.com/796

 

가는 막대의 회전 관성

[Rotational Inertia of Rod]\title{Rotational Inertia of Rod}λ= ⁣dm ⁣dl=ML(1) \lambda=\frac{\dd m}{\dd l}=\frac{M}{L}\taag1 ⁣dm=λ ⁣dl \dd m=\lambda\cdot\dd l  ⁣dI=r2 ⁣dm=l2(λ ⁣dl)=λl2 ⁣dl(2) \begin{aligned} \dd I&={r}^2\cdot \dd m\\&={l}^2\cdot (\lambda\cdot\dd l)\\&=\lambda{l}^2\cdot \dd l\taag2\\\end{aligned} $$ \begin{ali

solutionpia.tistory.com

IRod=112ML2,I_{\text{Rod}}=\frac{1}{12}ML^2,

https://solutionpia.tistory.com/792

 

가는 원형 고리의 회전 관성

[Rotational Inertia of Hoop]\title{Rotational Inertia of Hoop}r=R,r=R,λ= ⁣dm ⁣dl=ML=M2πr=M2πR(1) \lambda=\frac{\dd m}{\dd l}=\frac{M}{L}=\frac{M}{2\pi r}=\frac{M}{2\pi R} \taag1l=rθ, ⁣dl=r ⁣dθ=R ⁣dθ(2) \begin{aligned}l&=r\theta,\\\dd l&=r\dd\theta\\&=R\dd\theta\taag2\end{aligned} $$ \begin{aligned} \dd m&=\lambda\cdo

solutionpia.tistory.com

IHoop=MR2,I_{\text{Hoop}}=MR^2,

https://solutionpia.tistory.com/900

 

수직축 정리

[Perpendicular Axis Theorem]\title{Perpendicular Axis Theorem}Iz=r2 ⁣dm=(x2+y2) ⁣dm=x2 ⁣dm+y2 ⁣dm=Ix+Iy \begin{aligned}I_z&=\int r^2\dd m\\&=\int \br{x^2+y^2}\dd m\\&=\int {x^2}\dd m+\int {y^2}\dd m\\&=I_x+I_y\\\end{aligned}

solutionpia.tistory.com

Iz=Ix+Iy,I_z=I_x+I_y, {T=7.6[s]R=0.50[m]m=2.0[kg] \begin{cases} T&=7.6\ut{s}\\ R&=0.50\ut{m}\\ m&=2.0\ut{kg}\\ \end{cases} I=Icom+mh2,I=I_\com+mh^2, (a)\ab{a} Ir z=IRod+mh2=112mR2+m(R2)2=13mR2 \begin{aligned} I_{r~z} &=I_{\text{Rod}}+mh^2\\ &=\frac{1}{12}mR^2+m\br{R\over 2}^2\\ &=\frac{1}{3}mR^2\\ \end{aligned} Is comz=4Irodz=43mR2 \begin{aligned} I_{s~\com z} &=4I_{\text{rod}z}\\ &={4\over3}mR^2\\ \end{aligned} Is comx=Is comy,I_{s~\com x}=I_{s~\com y}, Is comz=Is comx+Is comy=2Is comy \begin{aligned} I_{s~\com z} &=I_{s~\com x}+I_{s~\com y}\\ &=2I_{s~\com y}\\ \end{aligned} Is comy=12Is comz=1213mR2=16mR2 \begin{aligned} I_{s~\com y} &={1\over2}I_{s~\com z}\\ &={1\over2}\cdot\frac{1}{3}mR^2\\ &={1\over6}mR^2\\ \end{aligned} Is y=Is comy+mh2=16mR2+m(R2)2=512mR2(1) \begin{aligned} I_{s~y} &=I_{s~\com y}+mh^2\\ &={1\over6}mR^2+m\br{R\over2}^2\\ &={5\over12}mR^2\taag1\\ \end{aligned} Ih comz=IHoop=mR2 \begin{aligned} I_{h~\com z} &=I_{\text{Hoop}}\\ &=mR^2\\ \end{aligned} Ih comx=Ih comy,I_{h~\com x}=I_{h~\com y}, Ih comz=Ih comx+Ih comy=2Ih comy \begin{aligned} I_{h~\com z} &=I_{h~\com x}+I_{h~\com y}\\ &=2I_{h~\com y}\\ \end{aligned} Ih comy=12Ih comz=12mR2 \begin{aligned} I_{h~\com y} &={1\over2}I_{h~\com z}\\ &={1\over2} mR^2\\ \end{aligned} Ih y=Ih comy+mh2=12mR2+mR2=32mR2(2) \begin{aligned} I_{h~y} &=I_{h~\com y}+mh^2\\ &={1\over2} mR^2+mR^2\\ &={3\over2}mR^2\taag2\\ \end{aligned} I=Is y+Ih y=512mR2+32mR2=2312mR2=2324[kgm2]0.9583333333333334[kgm2]0.96[kgm2] \begin{aligned} I &=I_{s~y}+I_{h~y}\\ &={5\over12}mR^2+{3\over2}mR^2\\ &={23\over12}mR^2\\ &={23\over24}\ut{kg\cdot m^2}\\ &\approx 0.9583333333333334\ut{kg\cdot m^2}\\ &\approx 0.96\ut{kg\cdot m^2}\\ \end{aligned} (b)\ab{b} L=Iω=2πIT=115π456[kgm2/s]0.7922876209711102[kgm2/s]0.79[kgm2/s] \begin{aligned} L&=I\omega\\ &={2\pi I\over T}\\ &={115\pi\over456}\ut{kg\cdot m^2/s}\\ &\approx 0.7922876209711102\ut{kg\cdot m^2/s}\\ &\approx 0.79\ut{kg\cdot m^2/s}\\ \end{aligned}

 

가는 원형 고리의 회전 관성

[Rotational Inertia of Hoop]\title{Rotational Inertia of Hoop}r=R,r=R,λ= ⁣dm ⁣dl=ML=M2πr=M2πR(1) \lambda=\frac{\dd m}{\dd l}=\frac{M}{L}=\frac{M}{2\pi r}=\frac{M}{2\pi R} \taag1l=rθ, ⁣dl=r ⁣dθ=R ⁣dθ(2) \begin{aligned}l&=r\theta,\\\dd l&=r\dd\theta\\&=R\dd\theta\taag2\end{aligned} $$ \begin{aligned} \dd m&=\lambda\cdo

solutionpia.tistory.com

 

 

가는 원형 고리의 회전 관성

[Rotational Inertia of Hoop]\title{Rotational Inertia of Hoop}r=R,r=R,λ= ⁣dm ⁣dl=ML=M2πr=M2πR(1) \lambda=\frac{\dd m}{\dd l}=\frac{M}{L}=\frac{M}{2\pi r}=\frac{M}{2\pi R} \taag1l=rθ, ⁣dl=r ⁣dθ=R ⁣dθ(2) \begin{aligned}l&=r\theta,\\\dd l&=r\dd\theta\\&=R\dd\theta\taag2\end{aligned} $$ \begin{aligned} \dd m&=\lambda\cdo

solutionpia.tistory.com