기타 풀이/회전관성

가는 원형 고리의 회전 관성

짱세디럭스 2024. 5. 7. 20:34
[Rotational Inertia of Hoop]\title{Rotational Inertia of Hoop} r=R,r=R, λ= ⁣dm ⁣dl=ML=M2πr=M2πR(1) \lambda=\frac{\dd m}{\dd l}=\frac{M}{L}=\frac{M}{2\pi r}=\frac{M}{2\pi R} \taag1 l=rθ, ⁣dl=r ⁣dθ=R ⁣dθ(2) \begin{aligned} l&=r\theta,\\ \dd l&=r\dd\theta\\ &=R\dd\theta\taag2 \end{aligned}  ⁣dm=λ ⁣dl=λ(R ⁣dθ)=λR ⁣dθ(3) \begin{aligned} \dd m&=\lambda\cdot\dd l\\ &=\lambda\cdot (R\dd\theta)\\ &=\lambda R\cdot\dd\theta\taag3\\ \end{aligned}  ⁣dI=r2 ⁣dm=R2(λR ⁣dθ)=λR3 ⁣dθ(4) \begin{aligned} \dd I&=r^2\cdot \dd m\\ &=R^2\cdot \(\lambda R\dd\theta\)\\ &=\lambda R^3\cdot\dd\theta\taag4\\ \end{aligned} IHoop=L ⁣dI=02πλR3 ⁣dθ=λR302π ⁣dθ=(M2πR)R3(2π)=MR2 \begin{aligned} I_{\text{Hoop}}&=\oint_L \dd I\\ &=\int_0^{2\pi} \lambda R^3\cdot\dd\theta\\ &=\lambda \cdot R^3\cdot\int_0^{2\pi} \dd\theta\\ &=\(\frac{M}{2\pi R} \)\cdot R^3\cdot(2\pi)\\ &=MR^2\\ \end{aligned}