$$\title{Rotational Inertia of Solid Cylinder}$$ $$ \rho=\frac{\dd m}{\dd v}=\frac{M}{V}=\frac{M}{AH}=\frac{M}{\pi R^2 H} \taag1$$ $$ \begin{aligned} l&=r\theta,\\ \dd l&=r \dd \theta\\ \end{aligned} $$ $$ \begin{aligned} \dd a&=\dd l\cdot\dd r \\ &=(r \dd \theta)\cdot\dd r \\ &=r \cdot \dd r\dd \theta \taag2\\ \end{aligned} $$ $$ \begin{aligned} \dd v&=\dd a \cdot \dd h\\ &=(r \dd r \dd \theta) \cdot \dd h\\ &=r \cdot \dd r \dd \theta \dd h\taag3\\ \end{aligned} $$ $$ \begin{aligned} \dd m&=\rho\cdot\dd v\\ &=\rho\cdot (r \dd r \dd \theta \dd h)\\ &=\rho r\cdot\dd r \dd \theta \dd h\taag4\\ \end{aligned} $$ $$ \begin{aligned} \dd I&=r^2\cdot \dd m\\ &=r^2\cdot \(\rho r\dd r \dd \theta \dd h\)\\ &=\rho r^3\cdot\dd r \dd \theta \dd h\taag5\\ \end{aligned} $$ $$ \begin{aligned} I_{\text{Solid Cylinder}}&=\oiiint_V \dd I\\ &=\int_0^{H}\int_0^{2\pi}\int_0^{R} \rho r^3\dd r \dd \theta \dd h\\ &=\rho\cdot\(\int_0^{R} r^3\dd r\)\cdot\(\int_0^{2\pi} \dd \theta\)\cdot\(\int_0^{H} \dd h\)\\ &=\(\frac{M}{\pi R^2 H}\)\cdot\(\frac{1}{4}R^4\)\cdot(2\pi)\cdot(H)\\ &=\frac{1}{2}MR^2\\ \end{aligned} $$
'기타 풀이 > 회전관성' 카테고리의 다른 글
속이 채워진 직사각형의 회전관성 (0) | 2024.05.08 |
---|---|
가는 막대의 회전 관성 (0) | 2024.05.08 |
속이 채워진 얇은 원반의 회전 관성 (0) | 2024.05.07 |
속이 빈 얇은 원기둥 껍질의 회전 관성 (0) | 2024.05.07 |
가는 원형 고리의 회전 관성 (0) | 2024.05.07 |