$$ \begin{cases}
\vec a &= \(4.0\i+2.0\j\)\ut{m}\\
\vec b &= \(0.75\i+3.3\j\)\ut{m}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\phi_{ab}&=\cos^{-1}\frac{\vec a \cdot \vec b}{ab}\\
&=\cos^{-1}\frac{4\cdot0.75+2\cdot3.3}{\sqrt{4^2+2^2}\sqrt{0.75^2+3.3^2}}\\
&=\cos^{-1}\frac{\frac{48}{5}}{\frac{3 }{2}\sqrt{\frac{509}{5}}}\\
&=\cos^{-1}\frac{32}{\sqrt{2545}}\\
&\approx 0.8836721166534576\ut{rad}\\
&\approx 0.88\ut{rad}\\
\end{aligned} $$
$$\ab{b,c,e,f}$$
$$ \begin{aligned}
\cos^{-1}\frac{\vec a \cdot \vec x}{ax}&=\frac{\pi}{2}\\
\frac{\vec a \cdot \vec x}{ax}&=\cos\frac{\pi}{2}=0\\
\end{aligned} $$
$$ \begin{aligned}
0&=\vec a \cdot \vec x\\
&=\(4\i+2\j\)\cdot\(8\cos\theta\i+8\sin\theta\j\)\\
&=4\cdot8\cos\theta+2\cdot8\sin\theta\\
\end{aligned} $$
$$ \begin{aligned}
-2&=\frac{\sin\theta}{\cos\theta}=\tan\theta\\
\end{aligned} $$
$$ \therefore\begin{cases}
\cos\theta=\pm\cfrac{1}{\sqrt5}\\
\sin\theta=\mp\cfrac{2}{\sqrt5}
\end{cases} $$
$$ \begin{aligned}
\vec x &= 8\cos\theta\i+8\sin\theta\j\\
&= \pm\frac{8}{\sqrt5}\i\mp\frac{16}{\sqrt5}\j\\
\end{aligned} $$
$$\ab{b,c}$$
$$ \begin{aligned}
\vec c&=\frac{8}{\sqrt5}\i-\frac{16}{\sqrt5}\j
\end{aligned} $$
$$\ab{b}$$
$$c_x=\frac{8}{\sqrt5}$$
$$\ab{c}$$
$$c_y=-\frac{16}{\sqrt5}$$
$$\ab{e,f}$$
$$ \begin{aligned}
\vec d&=-\frac{8}{\sqrt5}\i+\frac{16}{\sqrt5}\j
\end{aligned} $$
$$\ab{e}$$
$$d_x=-\frac{8}{\sqrt5}$$
$$\ab{c}$$
$$d_y=\frac{16}{\sqrt5}$$
'11판 > 3. 벡터' 카테고리의 다른 글
3-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-19 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |