$$ \begin{cases}
\theta_{a~y+}&=50.0\degree\\
a&=1.70\\
a_x&=0\\
a_z&>0\\
\end{cases} $$
$$ \begin{cases}
\phi_{b~x+}&=70.0\degree\\
b&=2.90\\
b_y&=0\\
b_z&>0\\
\end{cases} $$
$$ \begin{aligned}
\vec a&=a\cos\theta\j+a\sin\theta\k\\
&=1.7\cos50\degree\j+1.7\sin50\degree\k\\
\end{aligned} $$
$$ \begin{aligned}
\vec b&=b\cos\theta\i+b\sin\theta\k\\
&=2.9\cos70\degree\i+2.9\sin70\degree\k\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
\vec a\cdot\vec b=&\(1.7\cos50\degree\j+1.7\sin50\degree\k\)\cdot\(2.9\cos70\degree\i+2.9\sin70\degree\k\)\\
=&0\cdot2.9\cos70\degree+1.7\cos50\degree\cdot0+1.7\sin50\degree\cdot2.9\sin70\degree\\
=&4.93\sin50\degree\sin70\degree\\
=&\frac{493}{800} \csc 10\degree\\
\approx& 3.548842310237264\\
\approx& 3.55
\end{aligned} $$
$$\ab{b}$$
$$ \vec a\times \vec b=(a_yb_z-b_ya_z)\i+(a_zb_x-b_za_x)\j+(a_xb_y-b_xa_y)\k, $$
$$ \begin{aligned}
\vec a\times\vec b=&\(1.7\cos50\degree\j+1.7\sin50\degree\k\)\times\(2.9\cos70\degree\i+2.9\sin70\degree\k\)\\
=&\frac{493}{100} \sin40\degree \cos 20\degree\i+\frac{493}{100} \sin 20\degree \cos40\degree\j\\
&-\frac{493}{100} \sin 20\degree \sin40\degree\k\\
\approx&2.977832273626414\i+1.291672967030868\j\\
&-1.083842310237264\k\\
\approx&2.98\i+1.29\j-1.08\k\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\phi_{ab}&=\cos^{-1}\frac{\vec a\cdot \vec b}{ab}\\
&=\cos^{-1}\frac{\frac{493}{800} \csc 10\degree\\}{1.7\cdot2.9}\\
&=\cos^{-1}\(\frac{1}{8}\csc\degree\)\\
&=0.7672154454689077\ut{rad}\\
&=0.767\ut{rad}\\
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-24 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.24 |
3-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |