11판/3. 벡터

3-19 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 23. 18:58
{d1=d1j^d2=d2i^ \begin{cases} \vec d_1&=-d_1\j\\ \vec d_2&=d_2\i\\ \end{cases} (a)\ab{a} d25=d25i^\frac{\vec d_2}{5}= \frac{d_2}{5}\i +x\therefore +x (b)\ab{b} d15=d15j^=d15j^\frac{\vec d_1}{-5}= \frac{-d_1}{-5}\j=\frac{d_1}{5}\j +y\therefore +y (c)\ab{c} d1d2=(d1j^)(d2i^)=(0i^d1j^)(d2i^+0j^)=0d2+(d1)0=0 \begin{aligned} \vec d_1\cdot\vec d_2&=\(-d_1\j\)\cdot\(d_2\i\)\\ &=\(0\i-d_1\j\)\cdot\(d_2\i+0\j\)\\ &=0\cdot d_2+(-d_1)\cdot0\\ &=0 \end{aligned} (d)\ab{d} d1(d25)=(d1j^)(d25i^)=(0i^d1j^)(d25i^+0j^)=0d25+(d1)0=0 \begin{aligned} \vec d_1\cdot\(\frac{\vec d_2}{5}\)&=\(-d_1\j\)\cdot\(\frac{d_2}{5}\i\)\\ &=\(0\i-d_1\j\)\cdot\(\frac{d_2}{5}\i+0\j\)\\ &=0\cdot \frac{d_2}{5}+(-d_1)\cdot0\\ &=0 \end{aligned} (e)\ab{e} d1×d2=(d1j^)×(d2i^)=(d1d2)(j^×i^)=(d1d2)(1)(i^×j^)=(d1d2)(i^×j^)=d1d2k^ \begin{aligned} \vec d_1\times\vec d_2&=\(-d_1\j\)\times\(d_2\i\)\\ &=(-d_1d_2)\(\j\times\i\)\\ &=(-d_1d_2)(-1)\(\i\times\j\)\\ &=(d_1d_2)\(\i\times\j\)\\ &=d_1d_2\k \end{aligned} +z\therefore +z (f)\ab{f} d2×d1=(d2i^)×(d1j^)=(d2d1)(i^×j^)=d1d2k^ \begin{aligned} \vec d_2\times\vec d_1&=\(d_2\i\)\times\(-d_1\j\)\\ &=(-d_2d_1)\(\i\times\j\)\\ &=-d_1d_2\k \end{aligned} z\therefore -z (g)\ab{g} d1×d2=d1d2k^,d1×d2=d1d2 \begin{aligned} \vec d_1\times\vec d_2&=d_1d_2\k,\\ \abs{\vec d_1\times\vec d_2}&=d_1d_2 \end{aligned} (h)\ab{h} d2×d1=d1d2k^,d2×d1=d1d2 \begin{aligned} \vec d_2\times\vec d_1&=-d_1d_2\k,\\ \abs{\vec d_2\times\vec d_1}&=d_1d_2 \end{aligned} (i)\ab{i} d1×d25=(d1j^)×(d25i^)=(d1d25)(j^×i^)=(d1d25)(1)(i^×j^)=d1d25(i^×j^)=d1d25k^ \begin{aligned} \vec d_1\times\frac{\vec d_2}{5}&=\(-d_1\j\)\times\(\frac{d_2}{5}\i\)\\ &=\(-d_1\frac{d_2}{5}\)\(\j\times\i\)\\ &=\(-d_1\frac{d_2}{5}\)(-1)\(\i\times\j\)\\ &=\frac{d_1d_2}{5}\(\i\times\j\)\\ &=\frac{d_1d_2}{5}\k\\ \end{aligned} d1×d25=d1d25\therefore \abs{\vec d_1\times\frac{\vec d_2}{5}}=\frac{d_1d_2}{5} (j)\ab{j} +z\therefore +z