12-40 할리데이 11판 솔루션 일반물리학 {L=12.0[m]θ=50.0°T=400[N] \begin{cases} L&=12.0\ut{m}\\\theta&=50.0\degree\\T&=400\ut{N}\\\end{cases} ⎩⎨⎧LθT=12.0[m]=50.0°=400[N]{ΣFx=0ΣFy=0Στ=0 \begin{cases} \Sigma F_{x}&=0\\\Sigma F_{y}&=0\\\Sigma \tau&=0\\\end{cases} ⎩⎨⎧ΣFxΣFyΣτ=0=0=0{0=−T+Nx0=−mg+Ny0=TLcosθ−mgL2sinθ \begin{cases} 0&=-T+N_x\\0&=-mg+N_y\\0&=TL\cos\theta-mg{L\over2}\sin\theta\\\end{cases} ⎩⎨⎧000=−T+Nx=−mg+Ny=TLcosθ−mg2Lsinθ(a)\ab{a}(a)$$ \begin{aligned}mg&={2T\over\tan\theta}\\&=800\tan40\degree\ut{N}\\&\approx 671.279704941824\ut{N}\\&\approx 671\ut{N}\\\end{aligne.. 11판/12. 평형과 탄성 2024.12.15
12-39 할리데이 11판 솔루션 일반물리학 {2x=3.44[m]y=25.0[cm]mg=3160[N] \begin{cases} 2x&=3.44\ut{m}\\y&=25.0\ut{cm}\\mg&=3160\ut{N}\end{cases} ⎩⎨⎧2xymg=3.44[m]=25.0[cm]=3160[N]tanθ=yx, \begin{aligned}\tan\theta&={y\over x},\\\end{aligned} tanθ=xy,ΣFy=0,\Sigma F_y=0,ΣFy=0,0=2Ty−mgTy=mg2 \begin{aligned}0&=2T_y-mg\\T_y&={mg\over2}\end{aligned} 0Ty=2Ty−mg=2mg$$ \begin{aligned}T&={T_y\over \sin\theta}\\&=m g\cdot\frac{ x }{2 y}\sqrt{\frac{y^2}{x^2}+1}\\&=\frac{316 }{5}\sqrt{30209}\ut{N}\\&\approx 1.098462544468404\times 10^4\ut{N}\\&\approx.. 11판/12. 평형과 탄성 2024.12.15
12-38 할리데이 11판 솔루션 일반물리학 {H=59.1[m]2R=7.44[m]Δxtop0=4.01[m] \begin{cases} H&=59.1\ut{m}\\2R&=7.44\ut{m}\\\Delta x_{\text{top}0} &= 4.01\ut{m}\\\end{cases} ⎩⎨⎧H2RΔxtop0=59.1[m]=7.44[m]=4.01[m](a)\ab{a}(a)Δxcom=R,\Delta x_\com = R,Δxcom=R,Δxtop=2Δxcom=2R \begin{aligned}\Delta x_{\text{top}}&=2\Delta x_\com\\&=2R\\\end{aligned} Δxtop=2Δxcom=2RAns=2R−Δxtop0=3.43[m] \begin{aligned}\Ans&=2R-\Delta x_{\text{top}0}\\&=3.43\ut{m}\end{aligned} Ans=2R−Δxtop0=3.43[m](b)\ab{b}(b)$$ \begin{aligned}\theta&=\sin^{-1}{2R\over H}\\&=\sin^{-1}{124\over 985}\\&\approx 0.126223229105.. 11판/12. 평형과 탄성 2024.12.15
12-37 할리데이 11판 솔루션 일반물리학 T=900⋅yL⋯(1) T=900\cdot {y\over L} \taag 1T=900⋅Ly⋯(1)∣Fh∣=300−300⋅yL⋯(2) \abs{F_h}=300-300\cdot{y\over L} \taag 2∣Fh∣=300−300⋅Ly⋯(2){ΣFx=0ΣFy=0Στ=0 \begin{cases} \Sigma F_{x}&=0\\\Sigma F_{y}&=0\\\Sigma \tau&=0\\\end{cases} ⎩⎨⎧ΣFxΣFyΣτ=0=0=0{0=Fa−Tcosθ+Fh0=N−Tsinθ−mg0=LTcosθ−yFa \begin{cases} 0&=F_a-T\cos\theta+F_h\\0&=N-T\sin\theta-mg\\0&=LT\cos\theta-yF_a\\\end{cases} ⎩⎨⎧000=Fa−Tcosθ+Fh=N−Tsinθ−mg=LTcosθ−yFa(a)\ab{a}(a)Fa=300[N] \begin{aligned}F_a&=300\ut{N}\end{aligned} Fa=300[N](b)\ab{b}(b)$$ \begin{aligned}\theta&=2\tan^{-1}{1\over\sqrt2}\\&\approx 1.2309594.. 11판/12. 평형과 탄성 2024.12.15
12-36 할리데이 11판 솔루션 일반물리학 {θ=26°L=43[m]T=2.5[m]W=12[m]ρ=3.2[g/cm3]=3.2×103[kg/m2]μs=0.39 \begin{cases} \theta&=26\degree\\L&=43\ut{m}\\T&=2.5\ut{m}\\W&=12\ut{m}\\\rho&=3.2\ut{g/cm^3}=3.2\times10^{3}\ut{kg/m^2}\\\mu_s&=0.39\\\end{cases} ⎩⎨⎧θLTWρμs=26°=43[m]=2.5[m]=12[m]=3.2[g/cm3]=3.2×103[kg/m2]=0.39m=ρV=ρLTW=4.128×106[kg] \begin{aligned}m&=\rho V\\&=\rho LTW\\&=4.128\times10^6\ut{kg}\end{aligned} m=ρV=ρLTW=4.128×106[kg](a)\ab{a}(a)$$ \begin{aligned}\Ans&=mg\sin\theta\\&=4.128g\sin26\degree \times10^6\ut{N}\\&\approx 17.74607553468879\times10^6\ut{N}\\&\approx 18\times10^6\ut{N}\\&\ap.. 11판/12. 평형과 탄성 2024.12.15
12-35 할리데이 11판 솔루션 일반물리학 {mA=430[kg]mB=45.0[kg]ϕ=30.0°θ=45.0° \begin{cases} m_A&=430\ut{kg}\\m_B&=45.0\ut{kg}\\\phi&=30.0\degree\\\theta&=45.0\degree\\\end{cases} ⎩⎨⎧mAmBϕθ=430[kg]=45.0[kg]=30.0°=45.0°{Tx=TcosϕTy=Tsinϕ \begin{cases} T_x&=T\cos\phi\\T_y&=T\sin\phi\\\end{cases} {TxTy=Tcosϕ=Tsinϕ{ΣFx=0ΣFy=0Στ=0 \begin{cases} \Sigma F_{x}&=0\\\Sigma F_{y}&=0\\\Sigma \tau&=0\\\end{cases} ⎩⎨⎧ΣFxΣFyΣτ=0=0=0{0=Nx−Tx0=Ny−Ty−mAg0=TxLsinθ−(Ty+mAg)Lcosθ−mBg(L2)cosθ \begin{cases} 0&=N_x-T_x\\0&=N_y-T_y-m_Ag\\0&=T_xL\sin\theta-\br{T_y+m_Ag}L\cos\theta-m_Bg\br{L\over2}\cos\theta\\\end{cases} ⎩⎨⎧000=Nx−Tx=Ny−Ty−mAg=TxLsinθ−(Ty+mAg)Lcosθ−mBg(2L)cosθ(a)\ab{a}(a)$$ \beg.. 11판/12. 평형과 탄성 2024.10.17
12-34 할리데이 11판 솔루션 일반물리학 {mA=10[kg]mB=5.0[kg]θ=30° \begin{cases} m_A&=10\ut{kg}\\m_B&=5.0\ut{kg}\\\theta&=30\degree\end{cases} ⎩⎨⎧mAmBθ=10[kg]=5.0[kg]=30°0=F⃗A+F⃗B+T⃗,0=\vec F_A+\vec F_B+\vec T,0=FA+FB+T,tanθ=FAFB=μmAgmBg \begin{aligned}\tan\theta&={F_A\over F_B}\\&={\mu m_Ag\over m_Bg}\\\end{aligned} tanθ=FBFA=mBgμmAgμ=mBmAtanθ=123≈0.2886751345948129≈0.29 \begin{aligned}\mu&={m_B\over m_A}\tan\theta\\&={1\over2\sqrt3}\\&\approx 0.2886751345948129\\&\approx 0.29\\\end{aligned} μ=mAmBtanθ=231≈0.2886751345948129≈0.29 11판/12. 평형과 탄성 2024.10.16
12-33 할리데이 11판 솔루션 일반물리학 {M=mb+mp=89.00[kg]Ta=500[N]Tb=700[N]g=9.80665[m/s2] \begin{cases} M&=m_b+m_p=89.00\ut{kg}\\T_a&=500\ut{N}\\T_b&=700\ut{N}\\g&=9.80665\ut{m/s^2}\end{cases} ⎩⎨⎧MTaTbg=mb+mp=89.00[kg]=500[N]=700[N]=9.80665[m/s2]put xL=k,\put {x\over L}=k, put Lx=k,Στ=0,\Sigma \tau=0,Στ=0,0=−L2mbg−(xL)Lmpg+LTy=mbg+2kmpg−2Tsinθ \begin{aligned}0&=-{L\over2}m_bg-\br{x\over L}Lm_pg+LT_y \\&={m_bg}+2km_pg-2T\sin\theta \\\end{aligned} 0=−2Lmbg−(Lx)Lmpg+LTy=mbg+2kmpg−2Tsinθ{0=mbg+2(0)mpg−2(500)sinθ0=mbg+2(1)mpg−2(700)sinθ89=mb+mp \begin{cases} 0&={m_bg}+2\br{0}m_pg-2\br{500}\sin\theta \\0&={m_bg}+2\br{1}m_pg-2\br{700}\sin\theta \\89&=m_b+m_p\end{cases} ⎩⎨⎧0089=mbg+2(0)mpg−2(500)sinθ=mbg+2(1)mpg−2(700)sinθ=mb+mp$$\ab{a,b,.. 11판/12. 평형과 탄성 2024.10.16
12-32 할리데이 11판 솔루션 일반물리학 {F⃗1=8.40i^−5.70j^[N]F⃗2=16.0i^+4.10j^[N] \begin{cases} \vec F_1&=8.40\i-5.70\j\ut{N}\\\vec F_2&=16.0\i+4.10\j\ut{N}\\\end{cases} {F1F2=8.40i^−5.70j^[N]=16.0i^+4.10j^[N](a,b)\ab{a,b}(a,b)F⃗3=−(F⃗1+F⃗2)=−24.4i^+1.6j^[N] \begin{aligned}\vec F_3&=-\br{\vec F_1+\vec F_2}\\&=-24.4\i+1.6\j\ut{N}\\\end{aligned} F3=−(F1+F2)=−24.4i^+1.6j^[N]{F3x=−24.4[N]F3y=1.6[N] \begin{cases} F_{3x}&=-24.4\ut{N}\\F_{3y}&=1.6\ut{N}\\\end{cases} {F3xF3y=−24.4[N]=1.6[N](c)\ab{c}(c)$$ \begin{aligned}\theta&=\tan^{-1}{1.6\over-24.4}\\&\approx 3.0761126286663285\ut{rad}\\&\approx 3.08\ut{rad}\\\end{ali.. 11판/12. 평형과 탄성 2024.10.09
12-31 할리데이 11판 솔루션 일반물리학 {m1=85.0[kg]m2=30.0[kg]L2=2.00[m]m3=20.0[kg]d=0.500[m]L1=L2+2d \begin{cases} m_1&=85.0\ut{kg}\\m_2&=30.0\ut{kg}\\L_2&=2.00\ut{m}\\m_3&=20.0\ut{kg}\\d&=0.500\ut{m}\\L_1&=L_2+2d\\\end{cases} ⎩⎨⎧m1m2L2m3dL1=85.0[kg]=30.0[kg]=2.00[m]=20.0[kg]=0.500[m]=L2+2d{ΣF1y=0Στ1=0ΣF2y=0Στ2=0 \begin{cases} \Sigma F_{1y}&=0\\\Sigma \tau_1&=0\\\Sigma F_{2y}&=0\\\Sigma \tau_2&=0\\\end{cases} ⎩⎨⎧ΣF1yΣτ1ΣF2yΣτ2=0=0=0=0$$ \begin{cases} 0&=T_{1L}+T_{1R}-T_{2L}-T_{2R}-m_1g\\0&=-dT_{2L}-{L_1\over2}m_1g-\br{L_1-d}T_{2R}+L_1T_{1R} \\0&=T_{2L}+T_{2R}-m_2g-m_3g\\0&=-dm_3g-{L_2\over2}m_2g.. 11판/12. 평형과 탄성 2024.10.09