11판/3. 벡터

3-18 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 23. 18:32
{A=11.0,θA=100°B=6.50i^8.40j^ \begin{cases} A&=11.0,\theta_A=100\degree\\ \vec B &= -6.50\i-8.40\j\\ \end{cases} A=11cos100°i^+11sin100°j^,\vec A = 11\cos100\degree\i+11\sin100\degree\j, (a)\ab{a} 3AB= 311cos100°(6.50)+311sin100°(8.40)235.7411750254275236 \begin{aligned} 3\vec A\cdot\vec B =&~ 3\cdot11\cos100\degree\cdot(-6.50)\\ &+3\cdot11\sin100\degree\cdot(-8.40)\\ \approx&-235.7411750254275\\ \approx&-236\\ \end{aligned} (b)\ab{b} a×b=(aybzbyaz)i^+(azbxbzax)j^+(axbybxay)k^, \vec a\times \vec b=(a_yb_z-b_ya_z)\i+(a_zb_x-b_za_x)\j+(a_xb_y-b_xa_y)\k, C=4A×3B=4(11cos100°i^+11sin100°j^)×3(6.5i^8.4j^)=(55445sin10°+858cos10°)k^1037.506151481567k^1.04×103k^ \begin{aligned} \vec C &=4\vec A \times 3\vec B\\ &=4\(11\cos100\degree\i+11\sin100\degree\j\)\times3\(-6.5\i-8.4\j\)\\ &=\(\frac{5544}{5} \sin 10\degree+858 \cos 10\degree\)\k\\ &\approx 1037.506151481567\k\\ &\approx 1.04\times10^3\k\\ \end{aligned} (c)\ab{c} C=55445sin10°+858cos10°1037.5061514815671.04×103 \begin{aligned} C&=\frac{5544}{5} \sin 10\degree+858 \cos 10\degree\\ &\approx 1037.506151481567\\ &\approx 1.04\times10^3\\ \end{aligned} ϕC=0 \begin{aligned} \phi_C&=0 \end{aligned} θC:Indeterminate\theta_C : \text{Indeterminate} (d)\ab{d} ab=abcosϕab,\vec a \cdot \vec b=ab\cos\phi_{ab}, ϕAC=cosACAC=cos0AC=π2[rad] \begin{aligned} \phi_{AC}&=\cos\frac{\vec A\cdot\vec C}{AC}\\ &=\cos\frac{0}{AC}\\ &=\frac{\pi}{2}\ut{rad}\\ \end{aligned} (e)\ab{e} A=11cos100°i^+11sin100°j^,\vec A = 11\cos100\degree\i+11\sin100\degree\j, D=A+3.00k^=11cos100°i^+11sin100°j^+3k^1.910129954336234i^+10.83288528313429j^+3k^1.91i^+10.8j^+3k^ \begin{aligned} \vec D &= \vec A +3.00\k \\ &= 11\cos100\degree\i+11\sin100\degree\j+3\k\\ &\approx -1.910129954336234\i+10.83288528313429\j+3\k\\ &\approx -1.91\i+10.8\j+3\k\\ \end{aligned} D=121sin210°+121cos210°+911.4017542509913811.4 \begin{aligned} D&= \sqrt{121 \sin ^210\degree+121 \cos ^210\degree+9}\\ &\approx 11.40175425099138\\ &\approx 11.4\\ \end{aligned} ϕD=tan1121sin210°+121cos210°31.304544277643971[rad]1.30[rad] \begin{aligned} \phi_D&=\tan ^{-1}\frac{\sqrt{121 \sin ^210\degree+121 \cos ^210\degree}}{3}\\ &\approx 1.304544277643971\ut{rad}\\ &\approx 1.30\ut{rad}\\ \end{aligned} θD=θA=100° \begin{aligned} \theta_D&=\theta_A=100\degree \end{aligned}