$$ \begin{cases}
A&=11.0,\theta_A=100\degree\\
\vec B &= -6.50\i-8.40\j\\
\end{cases} $$
$$\vec A = 11\cos100\degree\i+11\sin100\degree\j,$$
$$\ab{a}$$
$$ \begin{aligned}
3\vec A\cdot\vec B =&~ 3\cdot11\cos100\degree\cdot(-6.50)\\
&+3\cdot11\sin100\degree\cdot(-8.40)\\
\approx&-235.7411750254275\\
\approx&-236\\
\end{aligned} $$
$$\ab{b}$$
$$ \vec a\times \vec b=(a_yb_z-b_ya_z)\i+(a_zb_x-b_za_x)\j+(a_xb_y-b_xa_y)\k, $$
$$ \begin{aligned}
\vec C &=4\vec A \times 3\vec B\\
&=4\(11\cos100\degree\i+11\sin100\degree\j\)\times3\(-6.5\i-8.4\j\)\\
&=\(\frac{5544}{5} \sin 10\degree+858 \cos 10\degree\)\k\\
&\approx 1037.506151481567\k\\
&\approx 1.04\times10^3\k\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
C&=\frac{5544}{5} \sin 10\degree+858 \cos 10\degree\\
&\approx 1037.506151481567\\
&\approx 1.04\times10^3\\
\end{aligned} $$
$$ \begin{aligned}
\phi_C&=0
\end{aligned} $$
$$\theta_C : \text{Indeterminate} $$
$$\ab{d}$$
$$\vec a \cdot \vec b=ab\cos\phi_{ab},$$
$$ \begin{aligned}
\phi_{AC}&=\cos\frac{\vec A\cdot\vec C}{AC}\\
&=\cos\frac{0}{AC}\\
&=\frac{\pi}{2}\ut{rad}\\
\end{aligned} $$
$$\ab{e}$$
$$\vec A = 11\cos100\degree\i+11\sin100\degree\j,$$
$$ \begin{aligned}
\vec D &= \vec A +3.00\k \\
&= 11\cos100\degree\i+11\sin100\degree\j+3\k\\
&\approx -1.910129954336234\i+10.83288528313429\j+3\k\\
&\approx -1.91\i+10.8\j+3\k\\
\end{aligned} $$
$$ \begin{aligned}
D&= \sqrt{121 \sin ^210\degree+121 \cos ^210\degree+9}\\
&\approx 11.40175425099138\\
&\approx 11.4\\
\end{aligned} $$
$$ \begin{aligned}
\phi_D&=\tan ^{-1}\frac{\sqrt{121 \sin ^210\degree+121 \cos ^210\degree}}{3}\\
&\approx 1.304544277643971\ut{rad}\\
&\approx 1.30\ut{rad}\\
\end{aligned} $$
$$ \begin{aligned}
\theta_D&=\theta_A=100\degree
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
---|---|
3-19 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |
3-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |
3-15 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.22 |