$$ \begin{cases}
\vec d_1&=-d_1\j\\
\vec d_2&=d_2\i\\
\end{cases} $$
$$\ab{a}$$
$$\frac{\vec d_2}{5}= \frac{d_2}{5}\i$$
$$\therefore +x$$
$$\ab{b}$$
$$\frac{\vec d_1}{-5}= \frac{-d_1}{-5}\j=\frac{d_1}{5}\j$$
$$\therefore +y$$
$$\ab{c}$$
$$ \begin{aligned}
\vec d_1\cdot\vec d_2&=\(-d_1\j\)\cdot\(d_2\i\)\\
&=\(0\i-d_1\j\)\cdot\(d_2\i+0\j\)\\
&=0\cdot d_2+(-d_1)\cdot0\\
&=0
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\vec d_1\cdot\(\frac{\vec d_2}{5}\)&=\(-d_1\j\)\cdot\(\frac{d_2}{5}\i\)\\
&=\(0\i-d_1\j\)\cdot\(\frac{d_2}{5}\i+0\j\)\\
&=0\cdot \frac{d_2}{5}+(-d_1)\cdot0\\
&=0
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
\vec d_1\times\vec d_2&=\(-d_1\j\)\times\(d_2\i\)\\
&=(-d_1d_2)\(\j\times\i\)\\
&=(-d_1d_2)(-1)\(\i\times\j\)\\
&=(d_1d_2)\(\i\times\j\)\\
&=d_1d_2\k
\end{aligned} $$
$$\therefore +z$$
$$\ab{f}$$
$$ \begin{aligned}
\vec d_2\times\vec d_1&=\(d_2\i\)\times\(-d_1\j\)\\
&=(-d_2d_1)\(\i\times\j\)\\
&=-d_1d_2\k
\end{aligned} $$
$$\therefore -z$$
$$\ab{g}$$
$$ \begin{aligned}
\vec d_1\times\vec d_2&=d_1d_2\k,\\
\abs{\vec d_1\times\vec d_2}&=d_1d_2
\end{aligned} $$
$$\ab{h}$$
$$ \begin{aligned}
\vec d_2\times\vec d_1&=-d_1d_2\k,\\
\abs{\vec d_2\times\vec d_1}&=d_1d_2
\end{aligned} $$
$$\ab{i}$$
$$ \begin{aligned}
\vec d_1\times\frac{\vec d_2}{5}&=\(-d_1\j\)\times\(\frac{d_2}{5}\i\)\\
&=\(-d_1\frac{d_2}{5}\)\(\j\times\i\)\\
&=\(-d_1\frac{d_2}{5}\)(-1)\(\i\times\j\)\\
&=\frac{d_1d_2}{5}\(\i\times\j\)\\
&=\frac{d_1d_2}{5}\k\\
\end{aligned} $$
$$\therefore \abs{\vec d_1\times\frac{\vec d_2}{5}}=\frac{d_1d_2}{5}
$$
$$\ab{j}$$
$$\therefore +z$$
'11판 > 3. 벡터' 카테고리의 다른 글
3-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
---|---|
3-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.23 |
3-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |
3-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |