4-1 할리데이 10판 솔루션 일반물리학 (a)r=?r=?r=? r=62+(−4)2+32=61[m]≈7.81[m] \begin{aligned} r=&\sqrt{6^2+(-4)^2+3^2}\\ =&\sqrt{61}\ut{m}\\ \approx&7.81\ut{m}\\ \end{aligned} r==≈62+(−4)2+3261[m]7.81[m] (b) 10판/4. 2차원운동과 3차원운동 2019.08.13
3-44 할리데이 10판 솔루션 일반물리학 {F⃗=qv⃗×B⃗q=3v⃗=2.0i^+4.0j^+6.0k^F⃗=4.0i^−20j^+12k^B⃗=Bxi^+Byj^+Bzk^Bx=By\begin{cases} \vec F = q\vec v \times \vec B\\ q = 3\\ \vec v = 2.0\i + 4.0\j +6. 0\k\\ \vec F = 4.0\i - 20\j + 1 2\k\\ \vec B = B_x\i+B_y\j+B_z\k\\ B_x=B_y\\ \end{cases} ⎩⎨⎧F=qv×Bq=3v=2.0i^+4.0j^+6.0k^F=4.0i^−20j^+12k^B=Bxi^+Byj^+Bzk^Bx=By F⃗=qv⃗×B⃗\vec F = q\vec v \times \vec BF=qv×B $$ \begin{aligned} \vec F=&q(v_x\i+v_y\j+v_z\k)\times (B_x\i+B_y\j+B_z\k)\\ =&q\begin{vmatrix} \i & \j & \k\\ v_x&v_y&v_z\\ B_x&B_y&B_z\\ \end{vmatrix}\\ =&q\begin{vmatrix} v_y&v_z\\ B_y&.. 10판/3. 벡터 2019.08.12
3-43 할리데이 10판 솔루션 일반물리학 {a⃗:(3.00[m],0)b⃗:(4.00[m],30.0∘)c⃗:(10.0[m],π2+30.0∘)\begin{cases} \vec a:(3.00\ut{m},0)\\ \vec b:(4.00\ut{m},30.0^\circ)\\ \vec c:(10.0\ut{m},\frac{\pi}{2}+30.0^\circ)\\ \end{cases} ⎩⎨⎧a:(3.00[m],0)b:(4.00[m],30.0∘)c:(10.0[m],2π+30.0∘) (a)(b) a⃗=3i^, \vec a = 3\i,a=3i^, (a)ax=?a_x=?ax=? ax=3.00a_x = 3.00ax=3.00 (b)ay=?a_y=?ay=? ay=0a_y = 0ay=0 (c)(d) b⃗=4cos30.0∘i^+4sin30.0∘j^=23i^+2j^ \begin{aligned} \vec b =& 4\cos30.0^\circ\i+4\sin30.0^\circ\j\\ =&2\sqrt3\i+2\j\\ \end{aligned} b==4cos30.0∘i^+4sin30.0∘j^23i^+2j^ (c)bx=?b_x=?bx=? bx=23≈3.46 b_x=2\sqrt3 \approx3.46bx=23≈3.46 (d)by=?b_y=?by=? by=2.00 b_y=2.00 by=2.00 (e)(f) $$ \be.. 10판/3. 벡터 2019.08.12
3-42 할리데이 10판 솔루션 일반물리학 {d⃗1=(4.0[m])i^+(5.0[m])j^d⃗2=(−3.0[m])i^+(4.0[m])j^\begin{cases} \vec d_1 = (4.0 \ut{m})\i + (5.0 \ut{m})\j\\ \vec d_2= (-3.0 \ut{m})\i + (4.0 \ut{m})\j\\ \end{cases} {d1=(4.0[m])i^+(5.0[m])j^d2=(−3.0[m])i^+(4.0[m])j^ (a) d⃗1×d⃗2=?\vec d_1 \times \vec d_2=?d1×d2=? $$ \begin{aligned} \vec d_1 \times \vec d_2=&\begin{vmatrix} \i & \j & \k\\ 4&5&0\\ -3&4&0\\ \end{vmatrix}\\ =&\begin{vmatrix} 5&0\\ 4&0\\ \end{vmatrix}\i+ \begin{vmatrix} 0&4\\ 0&-3\\ \end{vmatrix}\j+ \begin{vmatrix} 4&5\\ -3&4\\ \end{vmatrix}.. 10판/3. 벡터 2019.08.12
3-41 할리데이 10판 솔루션 일반물리학 {a⃗=4.0i^+4.0j^−4.0k^b⃗=3.0i^+2.0j^−4.0k^\begin{cases} \vec a =4.0\i+4.0\j-4.0\k\\ \vec b=3.0\i+2.0\j-4.0\k\\ \end{cases} {a=4.0i^+4.0j^−4.0k^b=3.0i^+2.0j^−4.0k^ a⃗⋅b⃗=axbx+ayby+azbz=4.0⋅3.0+4.0⋅2.0+(−4.0)⋅(−4.0)=36 \begin{aligned} \vec a \cdot \vec b=&a_xb_x+a_yb_y+a_zb_z\\ =&4.0\cdot3.0+4.0\cdot2.0+(-4.0)\cdot(-4.0)\\ =&36 \end{aligned} a⋅b===axbx+ayby+azbz4.0⋅3.0+4.0⋅2.0+(−4.0)⋅(−4.0)36 a=42+42+(−4)2=43a=\sqrt{4^2+4^2+(-4)^2}=4\sqrt3a=42+42+(−4)2=43 b=32+22+(−4)2=29b=\sqrt{3^2+2^2+(-4)^2}=\sqrt{29}b=32+22+(−4)2=29 $$ \begin{aligned} \phi_{ab}=&\cos^{-1}\(\frac{\vec a \cdot \vec b}{\abs{a}\abs{b}}\)\\ =&\cos^{-1}\(\frac{.. 10판/3. 벡터 2019.08.12
3-40 할리데이 10판 솔루션 일반물리학 (풀이자 주:d2 변위가 xy평면위에 있다면 z성분은 반드시 0입니다. 주어진 모든 조건을 만족시킬 방법은 없고 다만 오타로 의심되어 y성분이 양의 값인것으로 풀었습니다.) {d⃗1x=0d⃗1y=4.80cos63∘d⃗1z=4.80sin63∘\begin{cases} \vec d_{1x}=0\\ \vec d_{1y}=4.80\cos63^\circ\\ \vec d_{1z}=4.80\sin63^\circ\\ \end{cases}⎩⎨⎧d1x=0d1y=4.80cos63∘d1z=4.80sin63∘ {d⃗2x=1.40cos30∘=0.73d⃗2y=1.40sin30∘=0.7d⃗2z=0\begin{cases} \vec d_{2x}=1.40\cos30^\circ=0.7\sqrt3\\ \vec d_{2y}=1.40\sin30^\circ=0.7\\ \vec d_{2z}=0\\ \end{cases}⎩⎨⎧d2x=1.40cos30∘=0.73d2y=1.40sin30∘=0.7d2z=0 $$\begin{cases} \vec d_1=(4.80\cos63^\circ)\j+(4.80\sin63^\circ)\k\\ \v.. 10판/3. 벡터 2019.08.12
3-39 할리데이 10판 솔루션 일반물리학 {A⃗:(6.00,θA)B⃗:(7.00,θB)A⃗⋅B⃗=14.0\begin{cases} \vec A:(6.00,\theta_A)\\ \vec B:(7.00,\theta_B)\\ \vec A\cdot\vec B=14.0\\ \end{cases} ⎩⎨⎧A:(6.00,θA)B:(7.00,θB)A⋅B=14.0 ϕAB=?\phi_{AB}=?ϕAB=? ϕAB=cos−1(A⃗⋅B⃗AB)=cos−1(14.042.0)≈1.23[rad] \begin{aligned} \phi_{AB}=&\cos^{-1}\(\frac{\vec A\cdot\vec B}{AB}\)\\ =&\cos^{-1}\(\frac{14.0}{42.0}\)\\ \approx&1.23\ut{rad} \end{aligned} ϕAB==≈cos−1(ABA⋅B)cos−1(42.014.0)1.23[rad] 10판/3. 벡터 2019.08.10
3-38 할리데이 10판 솔루션 일반물리학 {A⃗=2.00i^+3.00j^−4.00k^B⃗=−3.00i^+4.00j^+2.00k^C⃗=7.00i^−8.00j^\begin{cases} \vec A = 2.00\i + 3.00\j - 4.00\k\\ \vec B = -3.00\i + 4.00\j+ 2 .00\k\\ \vec C= 7.00\i- 8.00 \j\\ \end{cases} ⎩⎨⎧A=2.00i^+3.00j^−4.00k^B=−3.00i^+4.00j^+2.00k^C=7.00i^−8.00j^ 3C⃗⋅(2A⃗×B⃗)=?3\vec C\cdot (2\vec A \times \vec B)=?3C⋅(2A×B)=? $$ \begin{aligned} \Ans=&3\vec C\cdot (2\vec A \times \vec B)\\ =&3\vec C\cdot \begin{vmatrix} \i & \j & \k\\ 4 &6 &-8 \\ -3 &4 &2 \\ \end{vmatrix}\\ =&3\vec C\cdot \( \begin{vmatrix} 6 &-8 \\ 4 &2 \\ \end{vmatrix}\i+ \begin{.. 10판/3. 벡터 2019.08.10
3-37 할리데이 10판 솔루션 일반물리학 {a⃗=3.0i^+3.0j^+(−2.0)k^b⃗=(−1.0)i^+(−4.0)j^+(−2.0)k^c⃗=2.0i^+2.0j^+1.0k^\begin{cases} \vec a = 3.0\i + 3.0\j +(- 2.0)\k\\ \vec b =(-1.0)\i +(-4.0)\j +(-2.0)\k\\ \vec c = 2.0\i + 2.0\j + 1.0\k\\ \end{cases} ⎩⎨⎧a=3.0i^+3.0j^+(−2.0)k^b=(−1.0)i^+(−4.0)j^+(−2.0)k^c=2.0i^+2.0j^+1.0k^ (a)a⃗⋅(b⃗×c⃗)\vec a\cdot(\vec b \times \vec c)a⋅(b×c) $$ \begin{aligned} \Ans=&\vec a\cdot(\vec b \times \vec c)\\ =&\vec a\cdot \begin{vmatrix} \i & \j & \k\\ -1&-4&-2\\ 2&2&1\\ \end{vmatrix}\\ =&\vec a\cdot \( \begin{vmatrix} -4&-2\\ 2&1\\ \end{vmatrix}\i+ \begin{vmatrix}.. 10판/3. 벡터 2019.08.10
3-36 할리데이 10판 솔루션 일반물리학 {p⃗1=4i^−3j^p⃗2=−6i^+3j^−2k^\begin{cases} \vec p_1 = 4\hat i - 3 \hat j\\ \vec p_2= -6\hat i + 3\hat j - 2\hat k\\ \end{cases} {p1=4i^−3j^p2=−6i^+3j^−2k^ $$ \begin{aligned} \Ans =& (\vec p_1 + \vec p_2)\cdot(\vec p_1\times \vec p_2)\\ =&\bra{(-2)\i+(-2)\k}\cdot \begin{vmatrix} \i & \j & \k\\ 4&-3&0\\ -6&3&-2\\ \end{vmatrix}\\ =&\bra{(-2)\i+(-2)\k}\\ &\cdot\( \begin{vmatrix} -3&0\\ 3&-2\\ \end{vmatrix}\i+ \begin{vmatrix} 0&4\\ -2&-6\\ \end{vmatr.. 10판/3. 벡터 2019.08.10