4-31 할리데이 10판 솔루션 일반물리학 {r⃗Q=(32,3.5)[m]r⃗P=(0,1.0)[m]v⃗0=(18[m/s],40°)a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec r_Q &= (32,3.5)\ut{m}\\ \vec r_P &= (0,1.0)\ut{m}\\ \vec v_0 &= (18\ut{m/s},40\degree)\\ \vec a &=-g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧rQrPv0ag=(32,3.5)[m]=(0,1.0)[m]=(18[m/s],40°)=−gj^≈9.80665[m/s2] [Over Q Point Possible?]\title{Over Q Point Possible?}[Over Q Point Possible?] v0=18cos40°i^+18sin40°j^,v_0 = 18\cos40\degree\i+18\sin40\degree\j,v0=18cos40°i^+18sin40°j^, t=Δxvx=3218cos40°=169sec40°\begin{aligned} t &= \frac{\Delta x}{v_x}\\ &= \frac{32}{18\cos40\degree}\\ &= \frac{16}{9} \sec40\degree\\ \end{aligned}t=vxΔx=18cos40°32=916sec40° $$\begin{aligned} \.. 10판/4. 2차원운동과 3차원운동 2020.08.11
4-30 할리데이 10판 솔루션 일반물리학 {v⃗A0=(23.1[m/s],45°)xB0=55[m]a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec v_{A0} &= (23.1\ut{m/s},45\degree)\\ x_{B0} &= 55\ut{m}\\ \vec a &=-g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧vA0xB0ag=(23.1[m/s],45°)=55[m]=−gj^≈9.80665[m/s2] vˉB=?\bar v_B=?vˉB=? v⃗A0=(23.1[m/s],45°)=231102i^+231102j^\begin{aligned} \vec v_{A0} &= (23.1\ut{m/s},45\degree)\\ &= \frac{231}{10 \sqrt{2}}\i+\frac{231}{10 \sqrt{2}}\j\\ \end{aligned}vA0=(23.1[m/s],45°)=102231i^+102231j^ $$\begin{aligned} \Delta y_A&=v_{Ay0}t+\frac{1}{2}a_yt^2,\\ 0 &= v_{Ay0}t+\frac{1}{2}(-g)t^2\\ &= v_{Ay0}-\fra.. 10판/4. 2차원운동과 3차원운동 2020.07.27
4-29 할리데이 10판 솔루션 일반물리학 {v0=6.00vHa⃗=−gj^\begin{cases} v_0 &= 6.00v_{H}\\ \vec a &= -g\j\\ \end{cases}{v0a=6.00vH=−gj^ θ0=?\theta_0=?θ0=? v⃗H=v⃗x,\begin{aligned} \vec v_H &= \vec v_x,\\ \end{aligned}vH=vx, θ0=cos−1vxv0=cos−1vH6vH=cos−116≈1.40334824758[rad]≈1.40[rad]\begin{aligned} \theta_0&=\cos^{-1}\frac{v_x}{v_0}\\ &=\cos^{-1}\frac{v_H}{6v_H}\\ &=\cos^{-1}\frac{1}{6}\\ &\approx 1.40334824758\ut{rad}\\ &\approx 1.40\ut{rad}\\ \end{aligned}θ0=cos−1v0vx=cos−16vHvH=cos−161≈1.40334824758[rad]≈1.40[rad] 10판/4. 2차원운동과 3차원운동 2020.07.27
4-28 할리데이 10판 솔루션 일반물리학 {v⃗0=(42.0[m/s],60.0°)t=5.50[s]a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec v_0 &= (42.0\ut{m/s},60.0\degree)\\ t &= 5.50\ut{s}\\ \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧v0tag=(42.0[m/s],60.0°)=5.50[s]=−gj^≈9.80665[m/s2] v⃗0=(42.0[m/s],60.0°)=21i^+213j^[m/s]\begin{aligned} \vec v_0 &= (42.0\ut{m/s},60.0\degree)\\ &=21\i+21\sqrt{3}\j\ut{m/s}\\ \end{aligned}v0=(42.0[m/s],60.0°)=21i^+213j^[m/s] (a) h=?h=?h=? $$\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}at^2,\\ h &= \(21\sqrt{3}\)(5.50)+\frac{1}{2}(-g)(5.50)^2\\ &=\frac{231 }{2}\sqrt{3}-\frac{121 }{.. 10판/4. 2차원운동과 3차원운동 2020.07.27
4-27 할리데이 10판 솔루션 일반물리학 {v⃗0=(290.0[km/h],−30.0°)Δx=700[m]a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec v_0 &= (290.0\ut{km/h},-30.0\degree)\\ \Delta x &= 700\ut{m}\\ \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧v0Δxag=(290.0[km/h],−30.0°)=700[m]=−gj^≈9.80665[m/s2] v⃗0=(290.0[km/h],−30.0°)=(7259[m/s],−30.0°)=72563i^−72518j^\begin{aligned} \vec v_0 &= (290.0\ut{km/h},-30.0\degree)\\ &=(\frac{725}{9}\ut{m/s},-30.0\degree)\\ &=\frac{725}{6 \sqrt{3}}\i-\frac{725}{18}\j\\ \end{aligned}v0=(290.0[km/h],−30.0°)=(9725[m/s],−30.0°)=63725i^−18725j^ (a) t=?t=?t=? $$\begin{aligned} \Delta x &= v_x t,\\ t&=\frac{\Delta x}{v_x}\\ &=\frac{700}.. 10판/4. 2차원운동과 3차원운동 2020.07.27
4-26 할리데이 10판 솔루션 일반물리학 {v⃗0=(18.0[m/s],40.0°)a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec v_0 &= (18.0\ut{m/s},40.0\degree)\\ \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧v0ag=(18.0[m/s],40.0°)=−gj^≈9.80665[m/s2] v⃗0=(18.0[m/s],40.0°)=18cos40°i^+18sin40°j^\begin{aligned} \vec v_0 &= (18.0\ut{m/s},40.0\degree)\\ &=18\cos40\degree\i+ 18\sin40\degree\j\\ \end{aligned}v0=(18.0[m/s],40.0°)=18cos40°i^+18sin40°j^ Δy=vy0t+12ayt2,=18sin40°t+12(−g)t2=18sin40°t−12gt2\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ &= 18\sin40\degree t+\frac{1}{2}(-g)t^2\\ &= 18\sin40\degree t-\frac{1}{2}gt^2\\ \end{aligned}Δy=vy0t+21ayt2,=18sin40°t+21(−g)t2=18sin40°t−21gt2 $$ \vec.. 10판/4. 2차원운동과 3차원운동 2020.07.27
4-25 할리데이 10판 솔루션 일반물리학 {a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}{ag=−gj^≈9.80665[m/s2] {Δx=77.0[m]Δy=0θ=12.0°\begin{cases} \Delta x &= 77.0\ut{m}\\ \Delta y &= 0\\ \theta &= 12.0\degree\\ \end{cases}⎩⎨⎧ΔxΔyθ=77.0[m]=0=12.0° Δy=vy0t+12ayt2,0=(v0sinθ)t+12(−g)t20=v0sinθ−12gtt=2v0gsinθ\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ 0 &= (v_0\sin\theta) t+\frac{1}{2}(-g)t^2\\ 0 &= v_0\sin\theta -\frac{1}{2}gt\\ t &= \frac{2v_0}{g}\sin\theta\\ \end{aligned}Δy00t=vy0t+21ayt2,=(v0sinθ)t+21(−g)t2=v0sinθ−21gt=g2v0sinθ $$\begin{aligned} \Delta x &= v_xt,\\ .. 10판/4. 2차원운동과 3차원운동 2020.07.23
4-24 할리데이 10판 솔루션 일반물리학 {a⃗=−gj^g=9.8[m/s2]\begin{cases} \vec a &= -g\j\\ g &= 9.8\ut{m/s^2}\\ \end{cases}{ag=−gj^=9.8[m/s2] {Δx=8.95[m]v0=9.5[m/s]\begin{cases} \Delta x &= 8.95\ut{m}\\ v_0 &= 9.5\ut{m/s}\\ \end{cases}{Δxv0=8.95[m]=9.5[m/s] {vx=v0cosθvy=v0sinθ\begin{cases} v_x &= v_0\cos\theta\\ v_y &= v_0\sin\theta\\ \end{cases}{vxvy=v0cosθ=v0sinθ $$\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ 0 &= (v_0\sin\theta) t+\frac{1}{2}(-g)t^2\\ 0 &= v_0\sin\theta -\frac{1}{2}gt\\ t &= \frac{2v_0}{g}\sin\theta\\ \end{al.. 10판/4. 2차원운동과 3차원운동 2020.07.23
4-23 할리데이 10판 솔루션 일반물리학 {a⃗=−gj^g≈9.80665[m/s2]\begin{cases} \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}{ag=−gj^≈9.80665[m/s2] {h=40.4[m]v⃗0=285i^[m/s]\begin{cases} h &= 40.4\ut{m}\\ \vec v_0 &= 285\i\ut{m/s}\\ \end{cases}{hv0=40.4[m]=285i^[m/s] (a) t=?t=?t=? Δy=vy0t+12ayt2,−h=(0)t+12(−g)t2h=12gt2t=2hg≈2.8704193075[s]≈2.87[s]\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ -h &= (0)t+\frac{1}{2}(-g)t^2\\ h &= \frac{1}{2}gt^2\\ t &=\sqrt{\frac{2h}{g}}\\ &\approx2.8704193075\ut{s}\\ &\approx2.87\ut{s} \end{aligned}Δy−hht=vy0t+21ayt2,=(0)t+21(−g)t2=21gt2=g2h≈2.8704193075[s]≈2.87[s] (b) Δx=?\Delta x=?Δx=? $$\begin{alig.. 10판/4. 2차원운동과 3차원운동 2020.07.19
4-22 할리데이 10판 솔루션 일반물리학 {h=1.50[m]Δx=1.52[m]a⃗=−gj^g≈9.80665[m/s2]\begin{cases} h &= 1.50\ut{m}\\ \Delta x &= 1.52\ut{m}\\ \vec a &= -g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}⎩⎨⎧hΔxag=1.50[m]=1.52[m]=−gj^≈9.80665[m/s2] (a) t=?t=?t=? Δy=vy0t+12ayt2,−1.5=(0)t+12(−g)t21.5=12gt2\begin{aligned} \Delta y &= v_{y0}t+\frac{1}{2}a_yt^2,\\ -1.5 &= (0)t+\frac{1}{2}(-g)t^2\\ 1.5 &= \frac{1}{2}gt^2\\ \end{aligned}Δy−1.51.5=vy0t+21ayt2,=(0)t+21(−g)t2=21gt2 t=3g≈0.553095709524[sec]≈0.553[sec]\begin{aligned} t&=\sqrt{\frac{3}{g}}\\ &\approx 0.553095709524\ut{sec}\\ &\approx 0.553\ut{sec}\\ \end{aligned}t=g3≈0.553095709524[sec]≈0.553[sec] (b) v0=?v_0=?v0=? $$\b.. 10판/4. 2차원운동과 3차원운동 2020.07.19