$$\begin{cases} y_0 &= 2.42\ut{m}\\ v_x &= 23.6\ut{m/s}\\ h_N &= 0.90\ut{m}\\ \Delta x &= 12\ut{m} \end{cases}$$ $$\begin{cases} \vec a &=-g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}$$ $$\begin{cases} t_0 : \text{Start}\\ t_1 : \text{On Net}\\ \end{cases}$$ (a),(b) $\text{horizon}$ $$\Delta x = v_x t,$$ $$\therefore t = \frac{\Delta x}{v_x}$$ $$\begin{aligned} S &= v_0t+\frac{1}{2}at^2,\\ \..