$$\begin{cases}
H &= 2.160\ut{m}\\
v_0 &= 15.00\ut{m/s}\\
\end{cases}$$
$$\begin{cases}
\vec a &=-g\j\\
g &\approx 9.80665\ut{m/s^2}\\
\end{cases}$$
$$\begin{aligned}
\Delta y&=v_{0y}t+\frac{1}{2}at^2\\
-H&=v_0t\sin\theta-\frac{1}{2}gt^2\\
-(2.160)&=(15.00)t\sin\theta-\frac{1}{2}gt^2\\
\end{aligned}$$
$$ \therefore t=\frac{3}{5 g} \left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)$$
$$\begin{aligned}
\Delta x &= v_x t\\
&=v_0\cos\theta \cdot t\\
&=(15.00)\cos\theta \cdot \frac{3}{5 g} \left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\\
&=\frac{9 }{g}\left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\cos \theta
\end{aligned}$$
(a) $\theta_0=45.0\degree, \Delta x=?$ $$\begin{aligned} \Delta x &=\frac{9}{g}\left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\cos \theta\\ &= \frac{9 }{2 g}\left(\sqrt{24 g+625}+25\right)\\ &\approx 24.9313977643\ut{m}\\ &\approx 24.9\ut{m}\\ \end{aligned}$$
(b) $\theta_0=42.0\degree, \Delta x=?$ $$\begin{aligned} \Delta x &=\frac{9}{g}\left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\cos \theta\\ &\approx 25.0068642996\ut{m}\\ &\approx 25.0\ut{m}\\ \end{aligned}$$
(a) $\theta_0=45.0\degree, \Delta x=?$ $$\begin{aligned} \Delta x &=\frac{9}{g}\left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\cos \theta\\ &= \frac{9 }{2 g}\left(\sqrt{24 g+625}+25\right)\\ &\approx 24.9313977643\ut{m}\\ &\approx 24.9\ut{m}\\ \end{aligned}$$
(b) $\theta_0=42.0\degree, \Delta x=?$ $$\begin{aligned} \Delta x &=\frac{9}{g}\left(\sqrt{12 g+625 \sin ^2\theta}+25 \sin \theta\right)\cos \theta\\ &\approx 25.0068642996\ut{m}\\ &\approx 25.0\ut{m}\\ \end{aligned}$$
'10판 > 4. 2차원운동과 3차원운동' 카테고리의 다른 글
4-42 할리데이 10판 솔루션 일반물리학 (0) | 2021.03.30 |
---|---|
4-41 할리데이 10판 솔루션 일반물리학 (0) | 2021.03.26 |
4-39 할리데이 10판 솔루션 일반물리학 (0) | 2021.03.19 |
4-38 할리데이 10판 솔루션 일반물리학 (0) | 2021.03.17 |
4-37 할리데이 10판 솔루션 일반물리학 (0) | 2020.12.01 |