10판/4. 2차원운동과 3차원운동

4-42 할리데이 10판 솔루션 일반물리학

짱세디럭스 2021. 3. 30. 17:50
{StartPoint=O=(0,0)[m]1stTower=A=(23,15)[m]2ndTower=B=(23+232,15)[m]Goal=C=(R,0)[m]\begin{cases} \text{StartPoint}=O&=(0,0)\ut{m}\\ \text{1stTower}=A&=(23,15)\ut{m}\\ \text{2ndTower}=B&=(23+\frac{23}{2},15)\ut{m}\\ \text{Goal}=C&=(R,0)\ut{m}\\ \end{cases} {v0=26.5[m/s]θ0=53°\begin{cases} v_0 &= 26.5\ut{m/s}\\ \theta_0 &= 53\degree\\ \end{cases} {t0=Start Timet1=Over 1stTower Timet2=Over 2ndTower Timet3=Goal Time\begin{cases} t_0&=\text{Start Time}\\ t_1&=\text{Over 1stTower Time}\\ t_2&=\text{Over 2ndTower Time}\\ t_3&=\text{Goal Time}\\ \end{cases} {a=gj^g9.80665[m/s2]\begin{cases} \vec a &=-g\j\\ g &\approx 9.80665\ut{m/s^2}\\ \end{cases}
(a) H1A=?H_{1A}=? Δx=vxt=v0tcosθ0t=Δxv0cosθ0\begin{aligned} \Delta x &= v_x t\\ &= v_0t\cos\theta_0\\ t&=\frac{\Delta x}{v_0\cos\theta_0} \end{aligned} Δy=v0yt+12at2H1=(v0sinθ0)(Δxv0cosθ0)+12(g)(Δxv0cosθ0)2=Δxtanθ0g2(Δxv0cosθ0)2\begin{aligned} \Delta y&=v_{0y}t+\frac{1}{2}at^2\\ H_1&=(v_0\sin\theta_0)\(\frac{\Delta x}{v_0\cos\theta_0}\)+\frac{1}{2}(-g)\(\frac{\Delta x}{v_0\cos\theta_0}\)^2\\ &=\Delta x \tan \theta_0 -\frac{g}{2}\(\frac{\Delta x }{ v_0\cos\theta_0}\)^2\\ \end{aligned} Ans=H1Ay=Δxtanθ0g2(Δxv0cosθ0)2Ay=23tanθ0+10582809gsec2θ01525.720349003[m]26[m]\begin{aligned} \Ans &= H_1 - A_y\\ &=\Delta x \tan \theta_0 -\frac{g}{2}\(\frac{\Delta x }{ v_0\cos\theta_0}\)^2 - A_y\\ &=23 \tan \theta_0 +\frac{1058 }{2809}g \sec ^2\theta_0-15\\ &\approx 25.720349003\ut{m}\\ &\approx 26\ut{m} \end{aligned}
(b) H2=max,H2B=?H_2=\max, H_{2B}=? 2aΔy=v2v02Ans=ΔyBy=v2v022aBy=(v0sinθ)22(g)By=2809sin2θ8g157.83696096839[m]7.8[m]\begin{aligned} 2a\Delta y&=v^2-v_0^2\\ \Ans &= \Delta y-B_y\\ &=\frac{v^2-v_0^2}{2a}-B_y\\ &=\frac{-(v_0\sin\theta)^2}{2(-g)}-B_y\\ &=\frac{2809 \sin ^2\theta}{8 g}-15\\ &\approx 7.83696096839\ut{m}\\ &\approx 7.8\ut{m}\\ \end{aligned}
(c) R=?R=? Δy=v0yt+12at20=v0y+12(g)tt=2v0yg\begin{aligned} \Delta y&=v_{0y}t+\frac{1}{2}at^2\\ 0&=v_{0y}+\frac{1}{2}(-g)t\\ t&=\frac{2v_{0y}}{g} \end{aligned} Δx=vxt=(v0cosθ0)(2v0sinθg)=v02gsin(2θ)=28094gsin(2θ)68.8355377191[m]69[m]\begin{aligned} \Delta x &= v_x t\\ &= (v_0\cos\theta_0)\(\frac{2v_0\sin\theta}{g}\)\\ &=\frac{v_0^2 }{g}\sin (2 \theta )\\ &=\frac{2809 }{4 g}\sin (2 \theta )\\ &\approx 68.8355377191\ut{m}\\ &\approx 69\ut{m}\\ \end{aligned}