11판/8. 퍼텐셜에너지와 에너지 보존 82

8-32 할리데이 11판 솔루션 일반물리학

{L=0.80[m]m=0.12[kg]g=9.80665[m/s2] \begin{cases} L&=0.80\ut{m}\\ m&=0.12\ut{kg}\\ g&=9.80665\ut{m/s^2}\\ \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \end{cases} put {0:Vertical Peak Point1:Horizontal Point2:Lowest Point \put \begin{cases} 0 : \text{Vertical Peak Point}\\ 1 : \text{Horizontal Point}\\ 2 : \text{Lowest Point}\\ \end{cases} (a)\ab{a} {v0=0 \begin{cases} v_0&=0 \end{cases} $$\Sigma E_0=\Sigma E..

8-31 할리데이 11판 솔루션 일반물리학

{v0=0m=5.0[kg]k=640[N/m]μ=0.25D=8.5[m]v2=0g=9.80665[m/s2] \begin{cases} v_0 &= 0\\ m &= 5.0\ut{kg}\\ k &= 640\ut{N/m}\\ \mu &= 0.25\\ D&=8.5\ut{m}\\ v_2&=0\\ g&=9.80665\ut{m/s^2} \end{cases} put {KE:Kinetic EnergyLE:Elastic Potential EnergyTE:Thermal Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \LE : \text{Elastic Potential Energy}\\ \TE : \text{Thermal Energy}\\ \end{cases} (a)\ab{a} $$ \begin{aligned} \Delta \TE &= fD\\ &=\mu m g D\\ &=\frac{85g}{8}\\ &=104.19565625\ut{J}\\ &=1.0\times10^2\ut..

8-30 할리데이 11판 솔루션 일반물리학

{L=1.50[m]m=4.00[kg]θ0=30.0°v0=0g=9.80665[m/s2] \begin{cases} L&=1.50\ut{m}\\ m&=4.00\ut{kg}\\ \theta_0&=30.0\degree\\ \vec v_0&=0\\ g&=9.80665\ut{m/s^2} \end{cases} put {0:Start1:Lowest Point \put \begin{cases} 0 : \text{Start}\\ 1 : \text{Lowest Point} \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \end{cases} $$ \begin{aligned} -\Delta h_{0\rarr1}&=L-L\cos\theta_0\\ &=L(1-\cos\theta_0)\\ \..

8-29 할리데이 11판 솔루션 일반물리학

{L=1.50[m]m=4.00[kg]θ0=30.0°v0=0g=9.80665[m/s2] \begin{cases} L&=1.50\ut{m}\\ m&=4.00\ut{kg}\\ \theta_0&=30.0\degree\\ \vec v_0&=0\\ g&=9.80665\ut{m/s^2} \end{cases} put {0:Start1:Lowest Point \put \begin{cases} 0 : \text{Start}\\ 1 : \text{Lowest Point} \end{cases} put {GE:Gravitational Potential Energy \put \begin{cases} \GE : \text{Gravitational Potential Energy}\\ \end{cases} Δh01=LLcosθ0=L(1cosθ0) \begin{aligned} -\Delta h_{0\rarr1}&=L-L\cos\theta_0\\ &=L(1-\cos\theta_0)\\ \end{aligned} (a)\ab{a} $$W..

8-28 할리데이 11판 솔루션 일반물리학

{m=0.040[kg]R=14[cm]=0.14[m]h=5.0R \begin{cases} m&=0.040\ut{kg}\\ R&=14\ut{cm}=0.14\ut{m}\\ h&=5.0R\\ \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \end{cases} put {P:P PointL:Lowest PointQ:Q PointH:Highest Point \put \begin{cases} P : \text{P Point}\\ L : \text{Lowest Point}\\ Q : \text{Q Point}\\ H : \text{Highest Point}\\ \end{cases} $$ \begin{cases} h_P&=h=5R\\ h_L&=0\\ h_Q&=R\\ h_H&=2R\\ \end{cases..

8-27 할리데이 11판 솔루션 일반물리학

{m=0.040[kg]R=14[cm]=0.14[m]h=5.0R \begin{cases} m&=0.040\ut{kg}\\ R&=14\ut{cm}=0.14\ut{m}\\ h&=5.0R\\ \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \end{cases} put {P:P PointL:Lowest PointQ:Q PointH:Highest Point \put \begin{cases} P : \text{P Point}\\ L : \text{Lowest Point}\\ Q : \text{Q Point}\\ H : \text{Highest Point}\\ \end{cases} $$ \begin{cases} h_P&=h=5R\\ h_L&=0\\ h_Q&=R\\ h_H&=2R\\ \end{cases..

8-26 할리데이 11판 솔루션 일반물리학

{k=120[N/m]m=4.0[kg]θ=40.0°g=9.80665[m/s2] \begin{cases} k &= 120\ut{N/m}\\ m &= 4.0\ut{kg}\\ \theta &= 40.0\degree\\ g&=9.80665\ut{m/s^2}\\ \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential EnergyLE:Elastic Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \LE : \text{Elastic Potential Energy}\\ \end{cases} Δh=Δxsinθ \begin{aligned} -\Delta h &= \Delta x\sin\theta \end{aligned} ΣEi=ΣEf,\Sigma E_i=\Sigma E_f, $$\KE_i+\GE_i+\LE_i=\KE_f+\GE_f+\L..

8-25 할리데이 11판 솔루션 일반물리학

{L=140[cm]=1.40[m]d=80.0[cm]=0.800[m]g=9.80665[m/s2] \begin{cases} L&=140\ut{cm}=1.40\ut{m}\\ d&=80.0\ut{cm}=0.800\ut{m}\\ g&=9.80665\ut{m/s^2} \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \end{cases} ΣEi=ΣEf,\Sigma E_i=\Sigma E_f, $$ \begin{aligned} \GE_i&=\KE_f+\GE_f\\ \KE_f&=-\Delta \GE\\ \frac{1}{2}m{v_f}^2&=-\Delta (mg h)_{i\rarr f}\\ {v_f}^2&=2g(-\Delta h_{i\rarr f})\\ {v_..

8-24 할리데이 11판 솔루션 일반물리학

put {KE:Kinetic EnergyGE:Gravitational Potential EnergyEE:Electric Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \EE : \text{Electric Energy}\\ \end{cases} {Δh=120[m]Vt=1500[m3/s]EE=34KEρw=1000[kg/m3]g=9.80665[m/s2] \begin{cases} \Delta h&=-120\ut{m}\\ \frac{V}{t}&=1500\ut{m^3/s}\\ \EE&=\frac{3}{4}\KE\\ \rho_{w}&=1000\ut{kg/m^3}\\ g&=9.80665\ut{m/s^2} \end{cases} ρ=mV,\rho=\frac{m}{V}, $$ \begin{aligned} \frac{m}{t}&=\rho\cdot\frac{V}{t}\\ &=1000\ut{kg/m^3}\cdo..

8-23 할리데이 11판 솔루션 일반물리학

{R=LvA=v0vD=0 \begin{cases} R&=L\\ v_A&=v_0\\ v_D&=0 \end{cases} put {KE:Kinetic EnergyGE:Gravitational Potential EnergyME:Mechanical Energy \put \begin{cases} \KE : \text{Kinetic Energy}\\ \GE : \text{Gravitational Potential Energy}\\ \ME : \text{Mechanical Energy} \end{cases} (a)\ab{a} ΣEA=ΣED,\Sigma E_A=\Sigma E_D, KEA+GEA=KED+GEDKEA=ΔGEAD   (vD=0) \begin{aligned} \KE_A+\GE_A&=\KE_D+\GE_D\\ \KE_A&=\Delta \GE_{A\rarr D}~~~(\because v_D=0)\\ \end{aligned} $$ \begin{aligned} \frac{1}{2}m{v_A}^2&=mg\Del..