$$ \begin{cases}
k &= 120\ut{N/m}\\
m &= 4.0\ut{kg}\\
\theta &= 40.0\degree\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\LE : \text{Elastic Potential Energy}\\
\end{cases} $$
$$ \begin{aligned}
-\Delta h &= \Delta x\sin\theta
\end{aligned} $$
$$\Sigma E_i=\Sigma E_f,$$
$$\KE_i+\GE_i+\LE_i=\KE_f+\GE_f+\LE_i$$
$$ \begin{aligned}
\GE_i&=\KE_f+\GE_f+\LE_f\\
\KE_f&=-\Delta \GE-\LE_f\\
\frac{1}{2}m{v_f}^2&=-\Delta(mgh)_{i\rarr f}-\frac{1}{2}k{x_f}^2\\
\end{aligned} $$
$$ \begin{aligned}
{v_f}^2&=2g(-\Delta h_{i\rarr f})-\frac{k{x_f}^2}{m}\\
&=2g\Delta(x_{i\rarr f}\sin\theta)-\frac{k{x_f}^2}{m}\\
v(x)&=\sqrt{(2g\sin\theta )x-\(\frac{k}{m}\){x}^2}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
v(10\ut{cm})&=v\(\frac{1}{10}\ut{m}\)\\
&=\sqrt{2g\sin\theta \(\frac{1}{10}\)-\(\frac{k}{m}\)\(\frac{1}{10}\)^2}\\
&\approx 0.9801625490226099\ut{m/s}\\
&\approx 0.98\ut{m/s}\\
&\approx 98\ut{cm/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ v(x)=\sqrt{(2g\sin\theta )x-\(\frac{k}{m}\){x}^2}=0,$$
$$ \begin{aligned}
x_b&=\frac{2mg}{k}\sin\theta\\
&\approx 0.4202395408355\ut{m}\\
&\approx 0.42\ut{m}\\
&\approx 42\ut{cm}\\
\end{aligned} $$
$$\ab{c}$$
$$\Sigma \vec F = m\vec a,$$
$$ \begin{aligned}
a(x)&= \frac{\Sigma F}{m}\\
&=\frac{kx-mg\sin\theta}{m}\\
&=\frac{k}{m}x-g\sin\theta\\
\end{aligned} $$
$$ \begin{aligned}
a(x_b)&=\frac{k}{m}\(\frac{2mg}{k}\sin\theta\)-g\sin\theta\\
&=g\sin\theta\\
&\approx 6.3035931125325\ut{m/s^2}\\
&\approx 6.3\ut{m/s^2}\\
\end{aligned} $$
$$\ab{d}$$
$$\text{Up}$$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
| 8-28 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
|---|---|
| 8-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
| 8-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
| 8-24 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |
| 8-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.01 |