$$ \begin{cases}
m&=0.040\ut{kg}\\
R&=14\ut{cm}=0.14\ut{m}\\
h&=5.0R\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\end{cases} $$
$$ \put \begin{cases}
P : \text{P Point}\\
L : \text{Lowest Point}\\
Q : \text{Q Point}\\
H : \text{Highest Point}\\
\end{cases} $$
$$ \begin{cases}
h_P&=h=5R\\
h_L&=0\\
h_Q&=R\\
h_H&=2R\\
\end{cases} $$
$$\ab{a}$$
$$\Sigma E_P=\Sigma E_Q,$$
$$ \begin{aligned}
\GE_P&=\GE_Q+\KE_Q\\
\KE_Q&=-\Delta \GE_{P\rarr Q}\\
\frac{1}{2}m{v_Q}^2&=-\Delta (mgh)_{P\rarr Q}\\
\end{aligned} $$
$$ \begin{aligned}
{v_Q}^2&=-2g\Delta h_{P\rarr Q}\\
&=-2g(-4R)\\
&=8gR\\
\end{aligned} $$
$$\Sigma F_R = \frac{mv^2}{R},$$
$$ \begin{aligned}
\Sigma F_x &= \Sigma F_R\\
&= \frac{mv^2}{R}\\
&= \frac{m(8gR)}{R}\\
&= 8mg\\
&= \frac{8g}{25}\\
&=3.138128\ut{N}\\
&\approx 3.1\ut{N}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Sigma F_y &= mg\\
&= \frac{g}{25}\\
&=0.392266\ut{N}\\
&\approx 0.39\ut{N}
\end{aligned} $$
$$\ab{c}$$
$$\Sigma E_i=\Sigma E_H,$$
$$ \begin{aligned}
\GE_i&=\GE_H+\KE_H\\
\KE_H&=-\Delta \GE_{i\rarr H}\\
\frac{1}{2}m{v_H}^2&=-\Delta (mgh)_{i\rarr H}\\
{v_H}^2&=2g(-\Delta h_{i\rarr H})\\
&=2g(h_i-h_H)\\
&=2g(h_i-2R)\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma F_{Hy}&=\Sigma F_{HR}\\
mg+N&=\frac{m{v_H}^2}{R}\\
mg&=\frac{m{v_H}^2}{R}\\
\end{aligned} $$
$$ \begin{aligned}
gR&={v_H}^2\\
&=2g(h_i-2R)\\
R&=2(h_i-2R)\\
\end{aligned} $$
$$ \begin{aligned}
2h_i&=5R\\
\end{aligned} $$
$$ \begin{aligned}
h_i&=\frac{5}{2}R\\
&=\frac{7}{20}\ut{m}\\
&=0.35\ut{m}\\
&=35\ut{cm}
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
---|---|
8-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |
8-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.02 |