5-51 할리데이 11판 솔루션 일반물리학 {m1=4.00[kg]m2=3.00[kg]θ1=25.0°θ2=65.0° \begin{cases} m_1&=4.00\ut{kg}\\ m_2&=3.00\ut{kg}\\ \theta_1&=25.0\degree\\ \theta_2&=65.0\degree\\ \end{cases} ⎩⎨⎧m1m2θ1θ2=4.00[kg]=3.00[kg]=25.0°=65.0° ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, {ΣF1=m1aΣF2=m2a \begin{cases} \Sigma F_1 &= m_1 a\\ \Sigma F_2 &= m_2 a\\ \end{cases} {ΣF1ΣF2=m1a=m2a {T−m1gsinθ1=m1am2gsinθ2−T=m2a \begin{cases} T-m_1g\sin\theta_1 &= m_1 a\\ m_2g\sin\theta_2-T &= m_2 a\\ \end{cases} {T−m1gsinθ1m2gsinθ2−T=m1a=m2a $$ \begin{aligned} T&= m_1 g(\sin\theta _1+ \sin \theta _2)\\ &\approx 52.129250544.. 11판/5. 힘과 운동 I 2024.02.22
5-50 할리데이 11판 솔루션 일반물리학 {mA=13[kg]mB=20[kg] \begin{cases} m_A&=13\ut{kg}\\ m_B&=20\ut{kg} \end{cases} {mAmB=13[kg]=20[kg] (a)\ab{a}(a) ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, {ΣFA=mAaAΣFB≥0 \begin{cases} \Sigma F_A &= m_A a_A\\ \Sigma F_B &\ge0\\ \end{cases} {ΣFAΣFB=mAaA≥0 {T−mAg=mAaAT>mBg \begin{cases} T-m_Ag &= m_A a_A\\ T &\gt m_Bg\\ \end{cases} {T−mAgT=mAaA>mBg a≥713g ≈5.280503846153846[m/s2] ≈5.3[m/s2] \begin{aligned} a&\ge\frac{7}{13}g\\ &~~~~\approx5.280503846153846\ut{m/s^2}\\ &~~~~\approx5.3\ut{m/s^2}\\ \end{aligned} a≥137g ≈5.280503846153846[m/s2] ≈5.3[m/s2] (b)\ab{b}(b) $$\Sigma \vec F.. 11판/5. 힘과 운동 I 2024.02.21
5-49 할리데이 11판 솔루션 일반물리학 {Na=20.0[N]Nb=10.0[N]Σm=15.0[kg] \begin{cases} N_a&=20.0\ut{N}\\ N_b&=10.0\ut{N}\\ \Sigma m&=15.0\ut{kg} \end{cases} ⎩⎨⎧NaNbΣm=20.0[N]=10.0[N]=15.0[kg] ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, {ΣFaA=maAaaAΣFaB=maBaaBΣFbB=mbBabBΣFbA=mbAabA \begin{cases} \Sigma F_{aA} &= m_{aA} a_{aA}\\ \Sigma F_{aB} &= m_{aB} a_{aB}\\ \Sigma F_{bB} &= m_{bB} a_{bB}\\ \Sigma F_{bA} &= m_{bA} a_{bA}\\ \end{cases} ⎩⎨⎧ΣFaAΣFaBΣFbBΣFbA=maAaaA=maBaaB=mbBabB=mbAabA $$ \begin{cases} \Sigma F_{aA} &= m_{A} a_{a}\\ \Sigma F_{aB} &= m_{B} a_{a}\\ \Sigma F_{bB} &= m_{B} a_{b}\\ \Sigm.. 11판/5. 힘과 운동 I 2024.02.21
5-48 할리데이 11판 솔루션 일반물리학 {T3=95.0[N]m1=10.0[kg]m2=14.0[kg]m3=23.0[kg] \begin{cases} T_3&=95.0\ut{N}\\ m_1&=10.0\ut{kg}\\ m_2&=14.0\ut{kg}\\ m_3&=23.0\ut{kg} \end{cases} ⎩⎨⎧T3m1m2m3=95.0[N]=10.0[kg]=14.0[kg]=23.0[kg] ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, {ΣF1=m1aΣF2=m2aΣF3=m3a \begin{cases} \Sigma F_1 &= m_1 a\\ \Sigma F_2 &= m_2 a\\ \Sigma F_3 &= m_3 a\\ \end{cases} ⎩⎨⎧ΣF1ΣF2ΣF3=m1a=m2a=m3a {T1=m1aT2−T1=m2aT3−T2=m3a \begin{cases} T_1 &= m_1 a\\ T_2-T_1 &= m_2 a\\ T_3-T_2 &= m_3 a\\ \end{cases} ⎩⎨⎧T1T2−T1T3−T2=m1a=m2a=m3a (a)\ab{a}(a) $$ \begin{aligned} a&=\frac{95}{47}\ut{m/s^2}\\ &\approx 2.02127659574.. 11판/5. 힘과 운동 I 2024.02.21
5-47 할리데이 11판 솔루션 일반물리학 {m=67[kg]T≤400[N]g=9.80665[m/s2] \begin{cases} m&=67\ut{kg}\\ T&\le400\ut{N}\\ g&=9.80665\ut{m/s^2} \end{cases} ⎩⎨⎧mTg=67[kg]≤400[N]=9.80665[m/s2] (a)\ab{a}(a) mg=657.04555[N]≈6.6×102[N]>400 \begin{aligned} mg&=657.04555\ut{N}\\ &\approx 6.6\times10^2\ut{N}\gt400\\ \end{aligned} mg=657.04555[N]≈6.6×102[N]>400 Lope Broken\text{Lope Broken}Lope Broken (b)\ab{b}(b) ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, $$ \begin{aligned} a&=\frac{\Sigma \vec F}{m}\\ &=\frac{T-mg}{m}\\ &=\frac{400-67g}{67}\\ &\approx -3.8365007462686567\ut{m/s^2}\\ &\approx -3.8.. 11판/5. 힘과 운동 I 2024.02.21
5-46 할리데이 11판 솔루션 일반물리학 {F1=4500[N]a1=0 \begin{cases} F_1&=4500\ut{N}\\ a_1&=0\\ \end{cases} {F1a1=4500[N]=0 {F2=2600[N]a2=−0.39[m/s2] \begin{cases} F_2&=2600\ut{N}\\ a_2&=-0.39\ut{m/s^2}\\ \end{cases} {F2a2=2600[N]=−0.39[m/s2] (a)\ab{a}(a) ΣF⃗=0⇔Δv⃗=0,\Sigma \vec F = 0 \Harr \Delta \vec v=0,ΣF=0⇔Δv=0, ΣF1=0F1−mg=0mg=F1=4500[N] \begin{aligned} \Sigma F_1 &= 0\\ F_1-mg &= 0\\ mg&=F_1\\ &=4500\ut{N} \end{aligned} ΣF1F1−mgmg=0=0=F1=4500[N] (b)\ab{b}(b) ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, ΣF2=ma2F2−mg=ma2 \begin{aligned} \Sigma F_2 &= m a_2\\ F_2-mg &= m a_2\\ \end{aligned} ΣF2F2−mg=ma2=ma2 $$ .. 11판/5. 힘과 운동 I 2024.02.21
5-45 할리데이 11판 솔루션 일반물리학 {m=4.0[kg]x⃗(t[s])=3.0+4.0t+ct2−3t3[m]F⃗(2.0[s])=−48[N] \begin{cases} m&=4.0\ut{kg}\\ \vec x(t\ut{s})&=3.0+4.0t+ct^2-3t^3\ut{m}\\ \vec F(2.0\ut{s})&=-48\ut{N} \end{cases} ⎩⎨⎧mx(t[s])F(2.0[s])=4.0[kg]=3.0+4.0t+ct2−3t3[m]=−48[N] a⃗= d2x⃗ dt2= d2 dt2(3.0+4.0t+ct2−3t3)=2c−18t \begin{aligned} \vec a&=\dxtt{\vec x}\\ &=\dtt(3.0+4.0t+ct^2-3t^3)\\ &=2c-18t\\ \end{aligned} a=dt2d2x=dt2d2(3.0+4.0t+ct2−3t3)=2c−18t F=ma=8(c−9t)F(2)=8(c−18)=−48,c=12[m/s2] \begin{aligned} F&=ma\\ &=8(c-9t)\\ F(2)&=8 (c-18)=-48,\\ c&=12\ut{m/s^2} \end{aligned} FF(2)c=ma=8(c−9t)=8(c−18)=−48,=12[m/s2] 11판/5. 힘과 운동 I 2024.02.21
5-44 할리데이 11판 솔루션 일반물리학 {m=0.600[kg]x(t[s])=−15.00+3.00t−2.00t3[m]y(t[s])=25.00+7.00t−7.00t2[m]t=1.20[s] \begin{cases} m&=0.600\ut{kg}\\ x(t\ut{s})&=-15.00+3.00t-2.00t^3\ut{m}\\ y(t\ut{s})&=25.00+7.00t-7.00t^2\ut{m}\\ t&=1.20\ut{s}\\ \end{cases} ⎩⎨⎧mx(t[s])y(t[s])t=0.600[kg]=−15.00+3.00t−2.00t3[m]=25.00+7.00t−7.00t2[m]=1.20[s] r⃗=(−15+3t−2t3)i^+(25+7t−7t2)j^,\vec r=(-15+3t-2t^3)\i+(25+7t-7t^2)\j,r=(−15+3t−2t3)i^+(25+7t−7t2)j^,\\ v⃗= dr⃗ dt= d dt{(−15+3t−2t3)i^+(25+7t−7t2)j^}=(3−6t2)i^+(7−14t)j^[m/s] \begin{aligned} \vec v&=\dxt{\vec r}\\ &=\dt\bra{(-15+3t-2t^3)\i+(25+7t-7t^2)\j}\\ &=(3-6t^2)\i+(7-14t)\j\ut{m/s} \end{aligned} v=dtdr=dtd{(−15+3t−2t3)i^+(25+7t−7t2)j^}=(3−6t2)i^+(7−14t)j^[m/s] $$ \begin{aligned} \vec a&=\dxt{\vec v}\\ &=\dt\bra{(3-6t^2)\i+(7-14t)\j.. 11판/5. 힘과 운동 I 2024.02.21
5-43 할리데이 11판 솔루션 일반물리학 {a1=10.0[m/s2]a2=6.20[m/s2] \begin{cases} a_1&=10.0\ut{m/s^2}\\ a_2&=6.20\ut{m/s^2}\\ \end{cases} {a1a2=10.0[m/s2]=6.20[m/s2] (a)\ab{a}(a) {m1=Fa1m2=Fa2 \begin{cases} m_1&=\cfrac{F}{a_1}\\ m_2&=\cfrac{F}{a_2}\\ \end{cases} ⎩⎨⎧m1m2=a1F=a2F aa=Fm2−m1=FFa2−Fa1=11a2−1a1=31019[m/s2]=16.3158[m/s2]≈16.3[m/s2] \begin{aligned} a_a&=\frac{F}{m_2-m_1}\\ &=\frac{F}{\frac{F}{a_2}-\frac{F}{a_1}}\\ &=\frac{1}{\frac{1}{a_2}-\frac{1}{a_1}}\\ &=\frac{310}{19}\ut{m/s^2}\\ &= 16.3158\ut{m/s^2}\\ &\approx 16.3\ut{m/s^2}\\ \end{aligned} aa=m2−m1F=a2F−a1FF=a21−a111=19310[m/s2]=16.3158[m/s2]≈16.3[m/s2] (b)\ab{b}(b) $.. 11판/5. 힘과 운동 I 2024.02.21
5-42 할리데이 11판 솔루션 일반물리학 {T0=43[N]va=5.3[m/s]ab=1.2[m/s2]vb=7.6[m/s2]g=9.80665[m/s2] \begin{cases} T_0&=43\ut{N}\\ v_a&=5.3\ut{m/s}\\ a_b&=1.2\ut{m/s^2}\\ v_b&=7.6\ut{m/s^2}\\ g&=9.80665\ut{m/s^2} \end{cases} ⎩⎨⎧T0vaabvbg=43[N]=5.3[m/s]=1.2[m/s2]=7.6[m/s2]=9.80665[m/s2] (a)\ab{a}(a) ΣF⃗=0⇔Δv⃗=0,\Sigma \vec F = 0 \Harr \Delta \vec v=0,ΣF=0⇔Δv=0, Ta=43[N]T_a=43\ut{N} Ta=43[N] (b)\ab{b}(b) ΣF⃗=ma⃗,\Sigma \vec F = m\vec a,ΣF=ma, {Ta−mg=0Tb−mg=m(−ab) \begin{cases} T_a-mg&=0\\ T_b-mg&=m(-a_b) \end{cases} {Ta−mgTb−mg=0=m(−ab) Tb=43−2585g=37.7383[N]≈38[N] \begin{aligned} T_b&=43-\frac{258}{5g}\\ &=37.7383\ut{N}\\ &\approx 38\ut{N} \end{aligned} Tb=43−5g258=37.7383[N]≈38[N] 11판/5. 힘과 운동 I 2024.02.21