3-14 할리데이 11판 솔루션 일반물리학 {R=22.0[cm]P⃗1=0P⃗2=2πR2i^+2Rj \begin{cases} R&=22.0\ut{cm}\\ \vec P_1&=0\\ \vec P_2&=\cfrac{2\pi R}{2}\i+2Rj \end{cases} ⎩⎨⎧RP1P2=22.0[cm]=0=22πRi^+2Rj ΔP⃗=P⃗2=πRi^+2Rj^ \begin{aligned} \Delta \vec P &= \vec P_2\\ &= \pi R\i+2R\j\\ \end{aligned} ΔP=P2=πRi^+2Rj^ (a)\ab{a}(a) P=(πR)2+(2R)2=Rπ2+4=22π2+4[cm]≈81.93221912121781[cm]≈81.9[cm] \begin{aligned} P&=\sqrt{(\pi R)^2+(2R)^2}\\ &=R\sqrt{\pi^2+4}\\ &=22\sqrt{\pi^2+4}\ut{cm}\\ &\approx 81.93221912121781\ut{cm}\\ &\approx 81.9\ut{cm} \end{aligned} P=(πR)2+(2R)2=Rπ2+4=22π2+4[cm]≈81.93221912121781[cm]≈81.9[cm] (b)\ab{b}(b) $$ \begin{aligned} \theta_P.. 11판/3. 벡터 2024.01.22
3-13 할리데이 11판 솔루션 일반물리학 {r⃗a=(90.0[km])i^r⃗b=(60.0[km])j^ \begin{cases} \vec r_a&=(90.0\ut{km})\i\\ \vec r_b&=(60.0\ut{km})\j\\ \end{cases} {rarb=(90.0[km])i^=(60.0[km])j^ r⃗s=−r⃗b+r⃗a=90i^−60j^ \begin{aligned} \vec r_s &= -\vec r_b+\vec r_a\\ &= 90\i-60\j \end{aligned} rs=−rb+ra=90i^−60j^ (a)\ab{a}(a) rs=902+602=3013[km]≈108.1665382639197[km]≈108[km] \begin{aligned} r_s &= \sqrt{90^2+60^2}\\ &= 30\sqrt{13}\ut{km}\\ &\approx 108.1665382639197\ut{km}\\ &\approx 108\ut{km}\\ \end{aligned} rs=902+602=3013[km]≈108.1665382639197[km]≈108[km] (b)\ab{b}(b) $$ \begin{aligned} \theta_{x+}&=\tan^{-1}\frac{60}{90}\\ &\app.. 11판/3. 벡터 2024.01.22
3-12 할리데이 11판 솔루션 일반물리학 {r⃗a=800i^[m]r⃗b=700j^[m]r⃗c=−300k^[m] \begin{cases} \vec r_a&=800\i\ut{m}\\ \vec r_b&=700\j\ut{m}\\ \vec r_c&=-300\k\ut{m}\\ \end{cases} ⎩⎨⎧rarbrc=800i^[m]=700j^[m]=−300k^[m] (a)\ab{a}(a) Σr⃗=(800[m])i^+(700[m])j^+(−300[m])k^ \begin{aligned} \Sigma \vec r &= \(800\ut{m}\)\i+\(700\ut{m}\)\j+\(-300\ut{m}\)\k\\ \end{aligned} Σr=(800[m])i^+(700[m])j^+(−300[m])k^ (b)\ab{b}(b) $$ \begin{aligned} \Ans &= \abs{-\Sigma \vec r}\\ &=\abs{\Sigma \vec r}\\ &=\sqrt{800^2+700^2+(-300)^2}\\ &=100\sqrt{122}\ut{m}\\ &\approx 1104.536101718726\ut{m}\\ &\.. 11판/3. 벡터 2024.01.22
3-11 할리데이 11판 솔루션 일반물리학 {a=3.90b=2.70ϕab=27.0° \begin{cases} a&=3.90\\ b&=2.70\\ \phi_{ab}&=27.0\degree\\ \end{cases} ⎩⎨⎧abϕab=3.90=2.70=27.0° Ans=∣a⃗×(b⃗×a⃗)∣=∣a⃗×c⃗∣=ac (∵a⃗⊥c⃗)=a⋅∣b⃗×a⃗∣=a⋅(basinϕ)=a2bsinϕ=(3.9)2(2.7)sin27°≈18.64402785280397≈18.6 \begin{aligned} \Ans&=\abs{\vec a\times (\vec b \times \vec a)}\\ &=\abs{\vec a\times \vec c}\\ &=ac ~(\because \vec a \perp \vec c)\\ &=a\cdot\abs{\vec b \times \vec a}\\ &=a\cdot(ba\sin\phi)\\ &=a^2b\sin\phi\\ &=(3.9)^2(2.7)\sin27\degree\\ &\approx 18.64402785280397\\ &\approx 18.6\\ \end{aligned} Ans=a×(b×a)=∣a×c∣=ac (∵a⊥c)=a⋅b×a=a⋅(basinϕ)=a2bsinϕ=(3.9)2(2.7)sin27°≈18.64402785280397≈18.6 11판/3. 벡터 2024.01.22
3-10 할리데이 11판 솔루션 일반물리학 {E=5.0[m],θE=+0.9[rad]F=6.0[m],θF=−75.0°G=7.00[m],θG=+1.2[rad]H=4.00[m],θH=−210° \begin{cases} E=5.0\ut{m}, \theta_E=+0.9\ut{rad}\\ F=6.0\ut{m}, \theta_F=-75.0\degree\\ G=7.00\ut{m},\theta_G=+1.2\ut{rad}\\ H=4.00\ut{m}, \theta_H=-210\degree\\ \end{cases} ⎩⎨⎧E=5.0[m],θE=+0.9[rad]F=6.0[m],θF=−75.0°G=7.00[m],θG=+1.2[rad]H=4.00[m],θH=−210° {E⃗=5cos0.9i^+5sin0.9j^F⃗=6cos(−75.0°)i^+6sin(−75.0°)j^G⃗=7cos1.2i^+7sin1.2j^H⃗=4cos(−210°)i^+4sin(−210°)j^ \begin{cases} \vec E =& 5\cos0.9\i+5\sin0.9\j\\ \vec F =& 6\cos(-75.0\degree)\i+6\sin(-75.0\degree)\j\\ \vec G =& 7\cos1.2\i+7\sin1.2\j\\ \vec H =& 4\cos(-210\degree)\i+4\sin(-210\degree)\j\\ \end{cases} ⎩⎨⎧E=F=G=H=5cos0.9i^+5sin0.9j^6cos(−75.0°)i^+6sin(−75.0°)j^7cos1.2i^+7sin1.2j^4cos(−210°)i^+4sin(−210°)j^ $$\ab{a}.. 11판/3. 벡터 2024.01.22
3-9 할리데이 11판 솔루션 일반물리학 {A=8.00θA=130°B⃗=−4.31i^−6.60j^ \begin{cases} A&=8.00\\ \theta_A&=130\degree\\ \vec B&=-4.31\i-6.60\j\\ \end{cases} ⎩⎨⎧AθAB=8.00=130°=−4.31i^−6.60j^ (a)\ab{a}(a) θAy−=θA+90°=220°=119π[rad]≈3.839724354387525[rad]≈3.84[rad] \begin{aligned} \theta_{Ay-}&=\theta_A+90\degree\\ &= 220\degree\\ &=\frac{11}{9}\pi\ut{rad}\\ &\approx3.839724354387525\ut{rad}\\ &\approx3.84\ut{rad}\\ \end{aligned} θAy−=θA+90°=220°=911π[rad]≈3.839724354387525[rad]≈3.84[rad] (b)\ab{b}(b) A⃗=8cos130°i^+8sin130°j^ \begin{aligned} \vec A = 8\cos130\degree\i+8\sin130\degree\j\\ \end{aligned} A=8cos130°i^+8sin130°j^ $$ \begin{aligned} \vec C&=\v.. 11판/3. 벡터 2024.01.20
3-8 할리데이 11판 솔루션 일반물리학 {a⃗=(90.0[km])j^b⃗=(35.0[km])i^ \begin{cases} \vec a&=(90.0\ut{km})\j\\ \vec b&=(35.0\ut{km})\i\\ \end{cases} {ab=(90.0[km])j^=(35.0[km])i^ c⃗=a⃗+(−b⃗)=90j^−35i^ \begin{aligned} \vec c &= \vec a + (-\vec b)\\ &=90\j-35\i\\ \end{aligned} c=a+(−b)=90j^−35i^ (a)\ab{a}(a) c=∣c⃗∣=(−35)2+902[km]=5373[km]≈96.56603957913984[km]≈96.6[km] \begin{aligned} c&=\abs{\vec c}\\ &= \sqrt{(-35)^2+90^2}\ut{km}\\ &= 5 \sqrt{373}\ut{km}\\ &\approx 96.56603957913984\ut{km}\\ &\approx 96.6\ut{km}\\ \end{aligned} c=∣c∣=(−35)2+902[km]=5373[km]≈96.56603957913984[km]≈96.6[km] (b)\ab{b}(b) $$ \begin{aligned} \theta_c&=\tan^{-1}\(\.. 11판/3. 벡터 2024.01.20
3-7 할리데이 11판 솔루션 일반물리학 {d⃗1=3i^−2j^+4k^d⃗2=−7i^+2j^−k^ \begin{cases} \vec d_1 &= 3\i-2\j+4\k\\ \vec d_2 &= -7\i+2\j-\k\\ \end{cases} {d1d2=3i^−2j^+4k^=−7i^+2j^−k^ Ans=(d⃗1+d⃗2)⋅(d⃗1×16d⃗2)=(−4i^+3k^)⋅{(3i^−2j^+4k^)×(−112i^+32j^−16k^)}=(−4i^+3k^)⋅(−96i^−400j^−128k^)=0 \begin{aligned} \Ans&=\(\vec d_1 + \vec d_2\)\cdot(\vec d_1\times 16\vec d_2)\\ &=\(-4\i+3\k\)\cdot\bra{\(3\i-2\j+4\k\)\times\(-112\i+32\j-16\k\)}\\ &=\(-4\i+3\k\)\cdot\(-96\i-400\j-128\k\)\\ &=0 \end{aligned} Ans=(d1+d2)⋅(d1×16d2)=(−4i^+3k^)⋅{(3i^−2j^+4k^)×(−112i^+32j^−16k^)}=(−4i^+3k^)⋅(−96i^−400j^−128k^)=0 11판/3. 벡터 2024.01.20
3-6 할리데이 11판 솔루션 일반물리학 {q=2.0v⃗=2.0i^+4.0j^+6.0k^F⃗=4.0i^−32j^+20k^Bx=By \begin{cases} q&=2.0\\ \vec v&= 2.0\i+4.0\j+6.0\k\\ \vec F&=4.0\i-32\j+20\k\\ B_x&=B_y \end{cases} ⎩⎨⎧qvFBx=2.0=2.0i^+4.0j^+6.0k^=4.0i^−32j^+20k^=By a⃗×b⃗=(aybz−byaz)i^+(azbx−bzax)j^+(axby−bxay)k^, \vec a\times \vec b=(a_yb_z-b_ya_z)\i+(a_zb_x-b_za_x)\j+(a_xb_y-b_xa_y)\k, a×b=(aybz−byaz)i^+(azbx−bzax)j^+(axby−bxay)k^, qv⃗×B⃗=2(2i^+4j^+6k^)×(Bxi^+Bxj^+Bzk^)=(4i^+8j^+12k^)×(Bxi^+Bxj^+Bzk^)=(−12Bx+8Bz)i^+(12Bx−4Bz)j^+(−4Bx)k^ \begin{aligned} q\vec v\times \vec B&=2\(2\i+4\j+6\k\)\times\(B_x\i+B_x\j+B_z\k\)\\ &=\(4\i+8\j+12\k\)\times\(B_x\i+B_x\j+B_z\k\)\\ &=\(-12B_x+8B_z\)\i+\(12B_x-4B_z\)\j+\(-4B_x\)\k\\ \end{aligned} qv×B=2(2i^+4j^+6k^)×(Bxi^+Bxj^+Bzk^)=(4i^+8j^+12k^)×(Bxi^+Bxj^+Bzk^)=(−12Bx+8Bz)i^+(12Bx−4Bz)j^+(−4Bx)k^ $$ \begin.. 11판/3. 벡터 2024.01.20
3-5 할리데이 11판 솔루션 일반물리학 {a=9.5b=7.5ϕab=55° \begin{cases} a&=9.5\\ b&=7.5\\ \phi_{ab}&=55\degree\\ \end{cases} ⎩⎨⎧abϕab=9.5=7.5=55° (a)\ab{a}(a) a⃗⋅b⃗=abcosϕ=(9.5)(7.5)cos55°≈40.86732109001203≈41 \begin{aligned} \vec a \cdot \vec b&=ab\cos\phi\\ &=(9.5)(7.5)\cos55\degree\\ &\approx 40.86732109001203\\ &\approx 41\\ \end{aligned} a⋅b=abcosϕ=(9.5)(7.5)cos55°≈40.86732109001203≈41 (b)\ab{b}(b) ∣a⃗×b⃗∣=absinϕ=(9.5)(7.5)sin55°≈58.36458315559067≈58 \begin{aligned} \abs{\vec a \times \vec b}&=ab\sin\phi\\ &=(9.5)(7.5)\sin55\degree\\ &\approx 58.36458315559067\\ &\approx 58\\ \end{aligned} a×b=absinϕ=(9.5)(7.5)sin55°≈58.36458315559067≈58 11판/3. 벡터 2024.01.20