11판/3. 벡터

3-10 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 22. 18:01
{E=5.0[m],θE=+0.9[rad]F=6.0[m],θF=75.0°G=7.00[m],θG=+1.2[rad]H=4.00[m],θH=210° \begin{cases} E=5.0\ut{m}, \theta_E=+0.9\ut{rad}\\ F=6.0\ut{m}, \theta_F=-75.0\degree\\ G=7.00\ut{m},\theta_G=+1.2\ut{rad}\\ H=4.00\ut{m}, \theta_H=-210\degree\\ \end{cases} {E=5cos0.9i^+5sin0.9j^F=6cos(75.0°)i^+6sin(75.0°)j^G=7cos1.2i^+7sin1.2j^H=4cos(210°)i^+4sin(210°)j^ \begin{cases} \vec E =& 5\cos0.9\i+5\sin0.9\j\\ \vec F =& 6\cos(-75.0\degree)\i+6\sin(-75.0\degree)\j\\ \vec G =& 7\cos1.2\i+7\sin1.2\j\\ \vec H =& 4\cos(-210\degree)\i+4\sin(-210\degree)\j\\ \end{cases} (a)\ab{a} Ans=A=E+F+G+H={23+32(31)+5cos910+7cos65}i^+{232(1+3)+5sin910+7sin65}j^3.733366778167407i^+6.645353192173592j^3.7i^+6.6j^ \begin{aligned} \Ans =& \vec A \\ =& \vec E + \vec F + \vec G + \vec H\\ =& \bra{-2 \sqrt{3}+\frac{3 }{\sqrt{2}}\(\sqrt{3}-1\)+5 \cos\frac{9}{10}+7 \cos \frac{6}{5}}\i\\ &+\bra{2-\frac{3}{\sqrt{2}}\(1+\sqrt{3}\)+5 \sin \frac{9}{10}+7 \sin\frac{6}{5}}\j\\ \approx & 3.733366778167407\i+6.645353192173592\j\\ \approx & 3.7\i+6.6\j \end{aligned} (b)\ab{b} A2={23+32(31)+5cos910+7cos65}2+{232(1+3)+5sin910+7sin65}2A7.62225337738492[m]7.62[m] \begin{aligned} A^2=& \bra{-2 \sqrt{3}+\frac{3 }{\sqrt{2}}\(\sqrt{3}-1\)+5 \cos\frac{9}{10}+7 \cos \frac{6}{5}}^2\\ &+\bra{2-\frac{3}{\sqrt{2}}\(1+\sqrt{3}\)+5 \sin \frac{9}{10}+7 \sin\frac{6}{5}}^2\\ A\approx & 7.62225337738492\ut{m}\\ \approx & 7.62\ut{m} \end{aligned} (c)\ab{c} A=axi^+ayj^={23+32(31)+5cos910+7cos65}i^+{232(1+3)+5sin910+7sin65}j^, \begin{aligned} \vec A =& a_x\i+a_y\j\\ =&\bra{-2 \sqrt{3}+\frac{3 }{\sqrt{2}}\(\sqrt{3}-1\)+5 \cos\frac{9}{10}+7 \cos \frac{6}{5}}\i\\ &+\bra{2-\frac{3}{\sqrt{2}}\(1+\sqrt{3}\)+5 \sin \frac{9}{10}+7 \sin\frac{6}{5}}\j,\\ \end{aligned} θA=tan1ayax=tan1{232(1+3)+5sin910+7sin6523+32(31)+5cos910+7cos65}60.67267444351846°60.7° \begin{aligned} \theta_A &= \tan^{-1}\frac{a_y}{a_x}\\ &=\tan^{-1}\bra{\frac{2-\frac{3}{\sqrt{2}}\(1+\sqrt{3}\)+5 \sin \frac{9}{10}+7 \sin\frac{6}{5}}{-2 \sqrt{3}+\frac{3 }{\sqrt{2}}\(\sqrt{3}-1\)+5 \cos\frac{9}{10}+7 \cos \frac{6}{5}}}\\ &\approx 60.67267444351846\degree\\ &\approx 60.7\degree\\ \end{aligned} (d)\ab{d} θA=tan1ayax=tan1{232(1+3)+5sin910+7sin6523+32(31)+5cos910+7cos65}1.058937935030015[rad]1.09[rad] \begin{aligned} \theta_A &= \tan^{-1}\frac{a_y}{a_x}\\ &=\tan^{-1}\bra{\frac{2-\frac{3}{\sqrt{2}}\(1+\sqrt{3}\)+5 \sin \frac{9}{10}+7 \sin\frac{6}{5}}{-2 \sqrt{3}+\frac{3 }{\sqrt{2}}\(\sqrt{3}-1\)+5 \cos\frac{9}{10}+7 \cos \frac{6}{5}}}\\ &\approx 1.058937935030015\ut{rad}\\ &\approx 1.09\ut{rad}\\ \end{aligned}