11판/3. 벡터

3-9 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 20. 14:13
{A=8.00θA=130°B=4.31i^6.60j^ \begin{cases} A&=8.00\\ \theta_A&=130\degree\\ \vec B&=-4.31\i-6.60\j\\ \end{cases} (a)\ab{a} θAy=θA+90°=220°=119π[rad]3.839724354387525[rad]3.84[rad] \begin{aligned} \theta_{Ay-}&=\theta_A+90\degree\\ &= 220\degree\\ &=\frac{11}{9}\pi\ut{rad}\\ &\approx3.839724354387525\ut{rad}\\ &\approx3.84\ut{rad}\\ \end{aligned} (b)\ab{b} A=8cos130°i^+8sin130°j^ \begin{aligned} \vec A = 8\cos130\degree\i+8\sin130\degree\j\\ \end{aligned} C=A×B={2645sin40°+86225cos40°}k^ \begin{aligned} \vec C&=\vec A\times\vec B\\ &=\bra{\frac{264}{5} \sin 40\degree+\frac{862}{25} \cos 40\degree}\k\\ \end{aligned} θCy=90°\therefore \theta_{Cy-}=90\degree (c)\ab{c} D=A×(B+3.00k^)={24cos40°}i^+{24sin40°}j^+{2645sin40°+86225cos40°}k^ \begin{aligned} \vec D =&\vec A\times\(\vec B + 3.00\k\)\\ =&\bra{24 \cos 40\degree}\i+\bra{24 \sin 40\degree}\j\\ &+\bra{\frac{264}{5} \sin40\degree+\frac{862}{25} \cos 40\degree}\k \end{aligned} θDy=cos1D(j^)D1=cos124sin40°1252(249839sin(10°)+568920cos(10)+801361)=cos1(300sin40°2249839sin10°+568920cos10°+801361)1.81061060093211[rad]1.81[rad] \begin{aligned} \theta_{Dy-}&=\cos^{-1}\frac{\vec D\cdot(-\j)}{D\cdot1}\\ &=\cos^{-1}\frac{-24\sin 40\degree}{\frac{1}{25} \sqrt{2 (-249839 \sin (10\degree)+568920 \cos (10{}^{\circ})+801361)}}\\ &=\cos ^{-1}\(-300 \sin40\degree \sqrt{\frac{2}{-249839 \sin10\degree+568920 \cos10\degree+801361}}\)\\ &\approx 1.81061060093211\ut{rad}\\ &\approx 1.81\ut{rad} \end{aligned}