$$ \begin{cases}
A&=8.00\\
\theta_A&=130\degree\\
\vec B&=-4.31\i-6.60\j\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\theta_{Ay-}&=\theta_A+90\degree\\
&= 220\degree\\
&=\frac{11}{9}\pi\ut{rad}\\
&\approx3.839724354387525\ut{rad}\\
&\approx3.84\ut{rad}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\vec A = 8\cos130\degree\i+8\sin130\degree\j\\
\end{aligned} $$
$$ \begin{aligned}
\vec C&=\vec A\times\vec B\\
&=\bra{\frac{264}{5} \sin 40\degree+\frac{862}{25} \cos 40\degree}\k\\
\end{aligned} $$
$$\therefore \theta_{Cy-}=90\degree
$$
$$\ab{c}$$
$$ \begin{aligned}
\vec D =&\vec A\times\(\vec B + 3.00\k\)\\
=&\bra{24 \cos 40\degree}\i+\bra{24 \sin 40\degree}\j\\
&+\bra{\frac{264}{5} \sin40\degree+\frac{862}{25} \cos 40\degree}\k
\end{aligned} $$
$$ \begin{aligned}
\theta_{Dy-}&=\cos^{-1}\frac{\vec D\cdot(-\j)}{D\cdot1}\\
&=\cos^{-1}\frac{-24\sin 40\degree}{\frac{1}{25} \sqrt{2 (-249839 \sin (10\degree)+568920 \cos (10{}^{\circ})+801361)}}\\
&=\cos ^{-1}\(-300 \sin40\degree \sqrt{\frac{2}{-249839 \sin10\degree+568920 \cos10\degree+801361}}\)\\
&\approx 1.81061060093211\ut{rad}\\
&\approx 1.81\ut{rad}
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-11 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |
---|---|
3-10 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.22 |
3-8 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.20 |
3-7 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.20 |
3-6 할리데이 11판 솔루션 일반물리학 (2) | 2024.01.20 |