$$ \put \begin{cases}
M : \text{motor}\\
P : \text{ship}\\
\end{cases} $$
$$ \begin{cases}
I_M&=3.0\times10^{-3}\ut{kg\cdot m^2}\\
I_P&=12\ut{kg\cdot m^2}\\
\Delta \theta_P&=30\degree={1\over12}\ut{rev}\\
\end{cases} $$
$$\vec L = I\vec \omega,$$
$$ \begin{aligned}
\vec L_\net&=\Sigma \vec L\\
\Sigma I\cdot\vec\omega_\net&=\Sigma \br{I\vec\omega}\\
\end{aligned} $$
$$ \therefore \vec \omega_\net={\Sigma \br{I\vec\omega}\over \Sigma I} $$
$$ \begin{aligned}
\Delta \theta_\net
&= \int_0^t\omega_\net \dd t,\\
&= \int_0^t{\Sigma \br{I\vec\omega}\over \Sigma I} \dd t\\
&= {1 \over \Sigma I}\int_0^t\Sigma \br{I\vec\omega} \dd t\\
&= {1 \over \Sigma I}\sum\br{\int_0^t I\vec\omega \dd t}\\
&= {1 \over \Sigma I}\sum\br{I\int_0^t \vec\omega \dd t}\\
&= {\Sigma\br{I\Delta \theta} \over \Sigma I}\\
\end{aligned} $$
$$\Delta \theta_\net=0,$$
$$ \begin{aligned}
0
&={\Sigma\br{I\Delta \theta} \over \Sigma I}\\
&={I_M\Delta \theta_M+I_P\Delta \theta_P \over I_M+I_P}\\
&=I_M\Delta \theta_M+I_P\Delta \theta_P\\
\end{aligned} $$
$$\therefore \theta_M=-{I_P\over I_M}\Delta \theta_P$$
$$ \begin{aligned}
\abs{ \theta_M}
&={I_P\over I_M}\Delta \theta_P\\
&=4000\Delta \theta_P\\
&={1000\over3}\ut{rev}\\
&\approx 3.333333333333333\times10^2\ut{rev}\\
&\approx 3.3\times10^2\ut{rev}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-47 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.29 |
---|---|
11-46 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.28 |
11-44 할리데이 11판 솔루션 일반물리학 (2) | 2024.05.23 |
11-43 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.23 |
11-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.22 |