$$ \begin{cases}
I&=0.333\ut{kg\cdot m^2}\\
L_i&=3.00\ut{kg\cdot m^2/s}\\
L_f&=0.800\ut{kg\cdot m^2/s}\\
\Delta t&=1.5\ut{s}\\
\end{cases} $$
$$\ab{a}$$
$$\vec \tau_\net=\dyt{\vec L}={\Delta L\over\Delta t},$$
$$ \begin{aligned}
\tau&={\Delta L\over\Delta t}\\
&={{L_f-L_i}\over\Delta t}\\
&=-{22\over15}\ut{N\cdot m}\\
&\approx -1.4666666666666666\ut{N\cdot m}\\
&\approx -1.5\ut{N\cdot m}\\
\end{aligned} $$
$$\ab{b}$$
$$L=I\omega,$$
$$\Delta \theta=\frac{1}{2}\br{\omega+\omega_0}t,$$
$$ \begin{aligned}
\Delta \theta
&={1\over2}\br{{L_f\over I}+{L_i\over I}}t\\
&={L_f+L_i\over2I}t\\
&={95\over111}\ut{rad}\\
&\approx 0.8558558558558559\ut{rad}\\
&\approx 0.86\ut{rad}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
W&=\int \tau \cdot\dd \theta\\
&=\tau \cdot\Delta \theta\\
&=-{22\over15} \cdot {95\over111}\ut{J}\\
&=-{418\over333}\ut{J}\\
&\approx -1.2552552552552552\ut{J}\\
&\approx -1.3\ut{J}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
P&=\dyt{W}={\Delta W\over \Delta t}\\
&=-{836\over999}\ut{W}\\
&\approx -0.8368368368368369\ut{W}\\
&\approx -0.84\ut{W}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-49 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.29 |
---|---|
11-48 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.29 |
11-46 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.28 |
11-45 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.25 |
11-44 할리데이 11판 솔루션 일반물리학 (2) | 2024.05.23 |