11판/11. 굴림운동, 토크, 각운동량

11-28 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 5. 18. 04:14
{m=2.90×104[kg]v=3.03[m/s]2d=4.20[cm]=4.20×102[m] \begin{cases} m&=2.90\times10^{-4}\ut{kg}\\ v&=3.03\ut{m/s}\\ 2d&=4.20\ut{cm}=4.20\times10^{-2}\ut{m}\\ \end{cases} {v=vi^S=vti^+dj^O=xi^+yj^+zk^r=SO=(vtx)i^+(dy)j^zk^ \begin{cases} \vec v&=v\i\\ \vec S&=vt\i+d\j\\ \vec O&=x\i+y\j+z\k\\ \vec r&=\vec S - \vec O=(vt-x)\i+(d-y)\j-z\k\\ \end{cases} L=m(r×v)=mv{zj^+(yd)k^} \begin{aligned} \vec L&=m(\vec r\times\vec v)\\ &=mv\bra{-z\j+\br{y-d}\k}\\ \end{aligned} L=mv(yd)2+z2 L=\abs{mv}\sqrt{\br{y-d}^2+{z}^2} {d1=+dd2=d \begin{cases} d_1&=+d\\ d_2&=-d\\ \end{cases} {L1=mv1(yd)2+z2L2=mv2(y+d)2+z2\therefore \begin{cases} L_{1}&=\abs{mv_{1}}\sqrt{\br{y-d}^2+{z}^2}\\ L_{2}&=\abs{mv_{2}}\sqrt{\br{y+d}^2+{z}^2}\\ \end{cases} (a)\ab{a} {va1=vva2=vOa=0 \begin{cases} v_{a1}&=v\\ v_{a2}&=-v\\ \vec O_a&=0 \end{cases} {La1=mva1(yad)2+za2La2=mva2(ya+d)2+za2 \begin{cases} L_{a1}&=\abs{mv_{a1}}\sqrt{\br{y_a-d}^2+{z_a}^2}\\ L_{a2}&=\abs{mv_{a2}}\sqrt{\br{y_a+d}^2+{z_a}^2}\\ \end{cases} {La1=mvdLa2=mvd \begin{cases} L_{a1}&=\abs{mvd}\\ L_{a2}&=\abs{mvd}\\ \end{cases} La1=La2=1.84527×105[kgm2/s]1.85×105[kgm2/s] \begin{aligned} L_{a1}&=L_{a2}\\ &=1.84527\times10^{-5}\ut{kg\cdot m^2/s}\\ &\approx 1.85\times10^{-5}\ut{kg\cdot m^2/s}\\ \end{aligned} (b)\ab{b} {vb1=vvb2=vOb=X \begin{cases} v_{b1}&=v\\ v_{b2}&=-v\\ \vec O_b&=\vec X \end{cases} {Lb1=mvb1(ybd)2+zb2Lb2=mvb2(yb+d)2+zb2 \begin{cases} L_{b1}&=\abs{mv_{b1}}\sqrt{\br{y_b-d}^2+{z_b}^2}\\ L_{b2}&=\abs{mv_{b2}}\sqrt{\br{y_b+d}^2+{z_b}^2}\\ \end{cases} {Lb1=mv(yd)2+z2Lb2=mv(y+d)2+z2 \begin{cases} L_{b1}&=\abs{mv}\sqrt{\br{y-d}^2+{z}^2}\\ L_{b2}&=\abs{mv}\sqrt{\br{y+d}^2+{z}^2}\\ \end{cases} {Lb1=8.787(103y21)2+(103z)2×107Lb2=8.787(103y+21)2+(103z)2×107 \begin{cases} L_{b1}&=8.787 \sqrt{\br{10^3 y-21}^2+\br{10^3 z}^2}\times10^{-7}\\ L_{b2}&=8.787 \sqrt{\br{10^3 y+21}^2+\br{10^3 z}^2}\times10^{-7}\\ \end{cases} (c)\ab{c} {vc1=vvc2=vOc=0 \begin{cases} v_{c1}&=v\\ v_{c2}&=v\\ \vec O_c&=0 \end{cases} {Lc1=mvc1(ycd)2+zc2Lc2=mvc2(yc+d)2+zc2 \begin{cases} L_{c1}&=\abs{mv_{c1}}\sqrt{\br{y_c-d}^2+{z_c}^2}\\ L_{c2}&=\abs{mv_{c2}}\sqrt{\br{y_c+d}^2+{z_c}^2}\\ \end{cases} {Lc1=mvdLc2=mvd \begin{cases} L_{c1}&=\abs{mvd}\\ L_{c2}&=\abs{mvd}\\ \end{cases} Lc1=Lc2=1.84527×105[kgm2/s]1.85×105[kgm2/s] \begin{aligned} L_{c1}&=L_{c2}\\ &=1.84527\times10^{-5}\ut{kg\cdot m^2/s}\\ &\approx 1.85\times10^{-5}\ut{kg\cdot m^2/s}\\ \end{aligned} (d)\ab{d} {vd1=vvd2=vOd=X \begin{cases} v_{d1}&=v\\ v_{d2}&=v\\ \vec O_d&=\vec X \end{cases} {Ld1=mvd1(ydd)2+zd2Ld2=mvd2(yd+d)2+zd2 \begin{cases} L_{d1}&=\abs{mv_{d1}}\sqrt{\br{y_d-d}^2+{z_d}^2}\\ L_{d2}&=\abs{mv_{d2}}\sqrt{\br{y_d+d}^2+{z_d}^2}\\ \end{cases} {Ld1=mv(yd)2+z2Ld2=mv(y+d)2+z2 \begin{cases} L_{d1}&=\abs{mv}\sqrt{\br{y-d}^2+{z}^2}\\ L_{d2}&=\abs{mv}\sqrt{\br{y+d}^2+{z}^2}\\ \end{cases} {Ld1=8.787(103y21)2+(103z)2×107Ld2=8.787(103y+21)2+(103z)2×107 \begin{cases} L_{d1}&=8.787 \sqrt{\br{10^3 y-21}^2+\br{10^3 z}^2}\times10^{-7}\\ L_{d2}&=8.787 \sqrt{\br{10^3 y+21}^2+\br{10^3 z}^2}\times10^{-7}\\ \end{cases}