$$ \begin{cases}
m&=2.90\times10^{-4}\ut{kg}\\
v&=3.03\ut{m/s}\\
2d&=4.20\ut{cm}=4.20\times10^{-2}\ut{m}\\
\end{cases} $$
$$ \begin{cases}
\vec v&=v\i\\
\vec S&=vt\i+d\j\\
\vec O&=x\i+y\j+z\k\\
\vec r&=\vec S - \vec O=(vt-x)\i+(d-y)\j-z\k\\
\end{cases} $$
$$ \begin{aligned}
\vec L&=m(\vec r\times\vec v)\\
&=mv\bra{-z\j+\br{y-d}\k}\\
\end{aligned} $$
$$ L=\abs{mv}\sqrt{\br{y-d}^2+{z}^2}$$
$$ \begin{cases}
d_1&=+d\\
d_2&=-d\\
\end{cases} $$
$$\therefore \begin{cases}
L_{1}&=\abs{mv_{1}}\sqrt{\br{y-d}^2+{z}^2}\\
L_{2}&=\abs{mv_{2}}\sqrt{\br{y+d}^2+{z}^2}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{cases}
v_{a1}&=v\\
v_{a2}&=-v\\
\vec O_a&=0
\end{cases} $$
$$ \begin{cases}
L_{a1}&=\abs{mv_{a1}}\sqrt{\br{y_a-d}^2+{z_a}^2}\\
L_{a2}&=\abs{mv_{a2}}\sqrt{\br{y_a+d}^2+{z_a}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{a1}&=\abs{mvd}\\
L_{a2}&=\abs{mvd}\\
\end{cases} $$
$$ \begin{aligned}
L_{a1}&=L_{a2}\\
&=1.84527\times10^{-5}\ut{kg\cdot m^2/s}\\
&\approx 1.85\times10^{-5}\ut{kg\cdot m^2/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{cases}
v_{b1}&=v\\
v_{b2}&=-v\\
\vec O_b&=\vec X
\end{cases} $$
$$ \begin{cases}
L_{b1}&=\abs{mv_{b1}}\sqrt{\br{y_b-d}^2+{z_b}^2}\\
L_{b2}&=\abs{mv_{b2}}\sqrt{\br{y_b+d}^2+{z_b}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{b1}&=\abs{mv}\sqrt{\br{y-d}^2+{z}^2}\\
L_{b2}&=\abs{mv}\sqrt{\br{y+d}^2+{z}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{b1}&=8.787 \sqrt{\br{10^3 y-21}^2+\br{10^3 z}^2}\times10^{-7}\\
L_{b2}&=8.787 \sqrt{\br{10^3 y+21}^2+\br{10^3 z}^2}\times10^{-7}\\
\end{cases} $$
$$\ab{c}$$
$$ \begin{cases}
v_{c1}&=v\\
v_{c2}&=v\\
\vec O_c&=0
\end{cases} $$
$$ \begin{cases}
L_{c1}&=\abs{mv_{c1}}\sqrt{\br{y_c-d}^2+{z_c}^2}\\
L_{c2}&=\abs{mv_{c2}}\sqrt{\br{y_c+d}^2+{z_c}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{c1}&=\abs{mvd}\\
L_{c2}&=\abs{mvd}\\
\end{cases} $$
$$ \begin{aligned}
L_{c1}&=L_{c2}\\
&=1.84527\times10^{-5}\ut{kg\cdot m^2/s}\\
&\approx 1.85\times10^{-5}\ut{kg\cdot m^2/s}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{cases}
v_{d1}&=v\\
v_{d2}&=v\\
\vec O_d&=\vec X
\end{cases} $$
$$ \begin{cases}
L_{d1}&=\abs{mv_{d1}}\sqrt{\br{y_d-d}^2+{z_d}^2}\\
L_{d2}&=\abs{mv_{d2}}\sqrt{\br{y_d+d}^2+{z_d}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{d1}&=\abs{mv}\sqrt{\br{y-d}^2+{z}^2}\\
L_{d2}&=\abs{mv}\sqrt{\br{y+d}^2+{z}^2}\\
\end{cases} $$
$$ \begin{cases}
L_{d1}&=8.787 \sqrt{\br{10^3 y-21}^2+\br{10^3 z}^2}\times10^{-7}\\
L_{d2}&=8.787 \sqrt{\br{10^3 y+21}^2+\br{10^3 z}^2}\times10^{-7}\\
\end{cases} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.18 |
---|---|
11-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.18 |
11-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.18 |
11-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |