$$ \begin{cases}
\omega_{Ai}&=900\ut{rev/min}=30\pi\ut{rad/s}\\
I_B&=2I_A\\
\omega_{Bi}&=0\\
\end{cases} $$
$$ \put \begin{cases}
\RE : \text{Rotational Kinetic Energy}\\
\end{cases} $$
$$\ab{a}$$
$$\Delta \Sigma \vec L=0,$$
$$ \begin{aligned}
0&=\Delta L_A+\Delta L_B\\
&=I_A\Delta \omega_A+I_B\Delta \omega_B\\
&=I_A (\omega_f-\omega_{Ai})+2I_A \omega_f\\
&=3\omega_f -\omega_{Ai}\\
\end{aligned} $$
$$ \begin{aligned}
\omega_f&=\frac{\omega_{Ai}}{3}\\
&=10\pi\ut{rad/s}\\
&\approx 31.41592653589793\ut{rad/s}\\
&\approx 31.4\ut{rad/s}\\
&\approx 31\ut{rad/s}\\
&\approx 3\times10\ut{rad/s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Ans &=-\frac{\Sigma \Delta \RE}{\Sigma \RE_i}\\
&=\frac{ \frac{1}{2}I_A\Delta ({\omega_{A}}^2)+\frac{1}{2}I_B\Delta ({\omega_{B}}^2)}{- \frac{1}{2}I_A{\omega_{Ai}}^2}\\
&=\frac{ I_A ({\omega_{f}}^2-{\omega_{Ai}}^2)+2I_A{\omega_{f}}^2}{- I_A{\omega_{Ai}}^2}\\
&=\frac{ 3{\omega_{f}}^2-{\omega_{Ai}}^2}{- {\omega_{Ai}}^2}\\
&=\frac{ 3{\(\frac{\omega_{Ai}}{3}\)}^2-{\omega_{Ai}}^2}{ -{\omega_{Ai}}^2}\\
&=\frac{2}{ 3}\\
&\approx 66.66666666666666\ut{\%}\\
&\approx 66.7\ut{\%}\\
&\approx 67\ut{\%}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.18 |
---|---|
11-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-24 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |