$$ \put \begin{cases}
A : \text{Disk}\\
B : \text{Man}\\
\end{cases} $$
$$ \begin{cases}
R&=1.20\ut{m}\\
m_A&=200\ut{kg}\\
k_A&=91.0\ut{cm}=0.910\ut{m}\\
m_B&=44.0\ut{kg}\\
v_{Ai}&=0\\
v_{Bi}&=3.00\ut{m/s}\\
\end{cases} $$
$$\ab{a}$$
$$k_A=\sqrt\frac{I_A}{m_A},$$
$$ \begin{aligned} I_A&=m_A{k_A}^2\\
&=\frac{8281}{50}\ut{kg\cdot m^2}\\
&=165.62\ut{kg\cdot m^2}\\
&\approx 166\ut{kg\cdot m^2}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\vec L&=\vec r\times \vec p\\
&=m(\vec r\times \vec v)\\
\end{aligned} $$
$$ \begin{aligned}
L_{Bi}&=m_BRv_{Bi}\\
&=\frac{792}{5}\ut{kg\cdot m^2/s}\\
&=158.4\ut{kg\cdot m^2/s}\\
&\approx 158\ut{kg\cdot m^2/s}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\Sigma I&= I_A+I_B\\
&=m_A{k_A}^2+m_BR^2\\
&=\frac{11449}{50}\ut{kg\cdot m^2}\\
&=228.98\ut{kg\cdot m^2}\\
\end{aligned} $$
$$\Delta \Sigma \vec L=0,$$
$$ \begin{aligned}
0
&=\Delta L_A+\Delta L_B\\
&= L_{Af}+ (L_{Bf}-L_{Bi})\\
&= L_{f}-L_{Bi}\\
&=\omega_f\Sigma I -L_{Bi}\\
\end{aligned} $$
$$ \begin{aligned}
\omega_f&=\frac{L_{Bi}}{\Sigma I}\\
&=\frac{7920}{11449}\ut{rad/s}\\
&\approx 0.6917634727923836\ut{rad/s}\\
&\approx 0.692\ut{rad/s}\\
\end{aligned} $$
'11판 > 11. 굴림운동, 토크, 각운동량' 카테고리의 다른 글
11-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
---|---|
11-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |
11-21 할리데이 11판 솔루션 일반물리학 (0) | 2024.05.16 |