$$ \begin{cases}
P &= 13.0\ut{m}, \theta_P=25.0\degree\\
Q &= 10.0\ut{m}, \theta_Q=(90.0+10.0)\degree\\
R &= 9.00\ut{m}, \theta_R=(90.0-20.0)\degree\\
S &= 8.00\ut{m}, \theta_R=(-90.0+40.0)\degree\\
\end{cases} $$
$$ \begin{cases}
\vec P &= 13\cos25\degree\i+13\sin25\degree\j\\
\vec Q &= 10\cos100\degree\i+10\sin100\degree\j\\
\vec R &= 9\cos70\degree\i+9\sin70\degree\j\\
\vec S &= 8\cos(-50\degree)\i+8\sin(-50\degree)\j\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\Ans=&\vec P+\vec Q+\vec R+\vec S\\
\vec A=&\(-10 \sin 10\degree+9 \sin 20\degree+8 \sin 40\degree+13 \cos 25\degree\)\i\\
&+\(13 \sin 25\degree+10 \cos 10\degree+9 \cos 20\degree-8\cos 40\degree\)\j\\
\approx &18.26600162223048\ut{m}\i+17.67099297487253\ut{m}\j\\
\approx &18.3\ut{m}\i+17.7\ut{m}\j\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
A^2=&\(13 \sin 25\degree+10 \cos 10\degree+9 \cos 20\degree-8\cos 40\degree\)^2\\
&+\(13 \sin 25\degree+10 \cos 10\degree+9 \cos 20\degree-8\cos 40\degree\)^2\\
\end{aligned} $$
$$ \begin{aligned}
A=&\sqrt{342+10 \sqrt{3}+117 \sqrt{6}}\ut{m}\\
\approx&25.41477538719004\ut{m}\\
\approx&25.4\ut{m}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\theta&=\tan^{-1}\frac{13 \sin 25\degree+10 \cos 10\degree+9 \cos 20\degree-8\cos 40\degree}{-10 \sin 10\degree+9 \sin 20\degree+8 \sin 40\degree+13 \cos 25\degree}\\
&\approx 0.7688426808855916\ut{rad}\\
&\approx 0.769\ut{rad}\\
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-28 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-24 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.24 |