$$ \begin{cases}
d_1&=0.30\ut{m},\theta_{1~y-}=-45\degree\\
\vec d_2&=0.250\ut{m}\i\\
d_3&=0.60\ut{m},\theta_{3~x+}=60.0\degree\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
d_{1x}&=0.3\cos\(-90\degree-45\degree\)\\
&=-\frac{3}{10 \sqrt{2}}\ut{m}\\
&\approx -0.2121320343559642\ut{m}\\
&\approx -0.21\ut{m}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
d_{1y}&=0.3\sin\(-90\degree-45\degree\)\\
&=-\frac{3}{10 \sqrt{2}}\ut{m}\\
&\approx -0.2121320343559642\ut{m}\\
&\approx -0.21\ut{m}
\end{aligned} $$
$$\ab{c}$$
$$ d_{2x}=0.250\ut{m} $$
$$\ab{d}$$
$$ d_{2y}=0 $$
$$\ab{e}$$
$$ \begin{aligned}
d_{3x}&=0.6\cos\(60\degree\)\\
&=\frac{3}{10}\ut{m}\\
&= 0.3\ut{m}\\
&= 0.30\ut{m}\\
\end{aligned} $$
$$\ab{f}$$
$$ \begin{aligned}
d_{3y}&=0.6\sin\(60\degree\)\\
&=\frac{3 \sqrt{3}}{10}\ut{m}\\
&\approx 0.5196152422706631\ut{m}\\
&\approx 0.520\ut{m}\\
\end{aligned} $$
$$\ab{g,h,i,j}$$
$$ \begin{aligned}
\Sigma \vec d&=\vec d_1+\vec d_2+\vec d_3\\
&=\(-\frac{3}{10 \sqrt{2}}\i-\frac{3}{10 \sqrt{2}}\j\)+\(0.25\ut{m}\i\)+\(0.3\i+0.3\sqrt{3}\j\)\\
&=\frac{1}{20}\(11-3\sqrt{2}\)\i-\frac{3}{20}\(\sqrt{2}-2\sqrt{3}\)\j\\
\end{aligned} $$
$$\ab{g}$$
$$ \begin{aligned}
d_x&=\frac{1}{20}\(11-3\sqrt{2}\)\ut{m}\\
&\approx 0.3378679656440358\ut{m}\\
&\approx 0.34\ut{m}\\
\end{aligned} $$
$$\ab{h}$$
$$ \begin{aligned}
d_y&=-\frac{3}{20}\(\sqrt{2}-2\sqrt{3}\)\ut{m}\\
&\approx 0.3074832079146989\ut{m}\\
&\approx 0.31\ut{m}\\
\end{aligned} $$
$$\ab{i}$$
$$ \begin{aligned}
d&=\sqrt{\(\frac{11-3\sqrt{2}}{20}\)^2+\(\frac{6\sqrt{3}-3\sqrt{2}}{20}\)^2}\\
&=\frac{1}{20} \sqrt{265-66 \sqrt{2}-36 \sqrt{6}}\ut{m}\\
&\approx 0.4568377013316144\ut{m}\\
&\approx 0.46\ut{m}\\
\end{aligned} $$
$$\ab{j}$$
$$ \begin{aligned}
\theta_d&=\tan^{-1}\frac{-\cfrac{3}{20}\(\sqrt{2}-2\sqrt{3}\)}{\cfrac{1}{20}\(11-3\sqrt{2}\)}\\
&\approx 0.7383503902645553\ut{rad}\\
&\approx 0.74\ut{rad}\\
\end{aligned} $$
$$\ab{k,l}$$
$$ \begin{aligned}
\Ans &=\vec d_2= -\vec d\\
\end{aligned} $$
$$\ab{k}$$
$$ \begin{aligned}
d_2&=d\\
&=\frac{1}{20} \sqrt{265-66 \sqrt{2}-36 \sqrt{6}}\ut{m}\\
&\approx 0.4568377013316144\ut{m}\\
&\approx 0.46\ut{m}\\
\end{aligned} $$
$$\ab{l}$$
$$ \begin{aligned}
\theta_{d_2}&=\theta_d+\pi\\
&=\pi+\tan^{-1}\frac{\cfrac{3}{20}\(\sqrt{2}-2\sqrt{3}\)}{\cfrac{1}{20}\(11-3\sqrt{2}\)}\\
&\approx -2.403242263325238\ut{rad}\\
&\approx -2.4\ut{rad}\\
\end{aligned} $$
'11판 > 3. 벡터' 카테고리의 다른 글
3-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
---|---|
3-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-26 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |
3-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.24 |