11판/2. 직선운동

2-44 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 1. 17. 17:20
y=(4.0[cm])sinπt4y=(4.0\ut{cm})\sin\frac{\pi t}{4} (a)\ab{a} vˉ02=ΣΔy02Σt02=y(2)y(0)2=(4sinπ24)(4sinπ04)2=(4)(0)2[cm/s]=2[cm/s]=2.0[cm/s] \begin{aligned} \bar v_{0\rarr2}&=\frac{\Sigma \Delta y_{0\rarr2}}{\Sigma t_{0\rarr2}}\\ &=\frac{y(2)-y(0)}{2}\\ &=\frac{\(4\sin\dfrac{\pi\cdot2}{4}\)-\(4\sin\dfrac{\pi\cdot0 }{4}\)}{2}\\ &=\frac{\(4\)-\(0\)}{2}\ut{cm/s}\\ &=2\ut{cm/s}\\ &= 2.0\ut{cm/s} \end{aligned} (b)\ab{b} v= ⁣dy ⁣dt= ⁣d ⁣dt(4sinπt4)=πcosπt4 \begin{aligned} v&=\dxt{y}\\ &=\dt\(4\sin\frac{\pi t}{4}\)\\ &=\pi\cos\frac{\pi t}{4}\\ \end{aligned} v(0)=πcos(π04)=π3.141592653589793[cm/s]3.1[cm/s]v(1)=πcos(π14)=π22.221441469079183[cm/s]2.2[cm/s]v(2)=πcos(π24)=0 \begin{aligned} v(0)&=\pi\cos\(\frac{\pi\cdot0}{4}\)\\ &=\pi\\ &\approx 3.141592653589793\ut{cm/s}\\ &\approx 3.1\ut{cm/s}\\ v(1)&=\pi\cos\(\frac{\pi\cdot1}{4}\)\\ &=\frac{\pi}{\sqrt 2}\\ &\approx 2.221441469079183\ut{cm/s}\\ &\approx 2.2\ut{cm/s}\\ v(2)&=\pi\cos\(\frac{\pi\cdot2}{4}\)\\ &=0\\ \end{aligned} (c)\ab{c} aˉ02=ΣΔvΣΔt=v(2)v(0)2=(0)(π)2[cm/s2]=π2[cm/s2]1.570796326794897[cm/s2]1.6[cm/s2] \begin{aligned} \bar a_{0\rarr2} &= \frac{\Sigma \Delta v}{\Sigma \Delta t}\\ &= \frac{v(2)-v(0)}{2}\\ &= \frac{(0)-(\pi)}{2}\ut{cm/s^2}\\ &= -\frac{\pi}{2}\ut{cm/s^2}\\ &\approx -1.570796326794897\ut{cm/s^2}\\ &\approx -1.6\ut{cm/s^2}\\ \end{aligned} (d)\ab{d} a= ⁣dv ⁣dt= ⁣d ⁣dt(πcosπt4)=π24sinπt4 \begin{aligned} a&=\dxt{v}\\ &=\dt\(\pi\cos\frac{\pi t}{4}\)\\ &=-\frac{\pi ^2}{4} \sin \frac{\pi t}{4}\\ \end{aligned} a(0)=π24sin(π04)=0a(1)=π24sin(π14)=π242[cm/s2]1.74471604990972[cm/s2]1.7[cm/s2]a(2)=π24sin(π24)=π24[cm/s2]2.46740110027234[cm/s2]2.5[cm/s2] \begin{aligned} a(0)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 0}{4}\)\\ &=0\\ a(1)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 1}{4}\)\\ &=-\frac{\pi ^2}{4 \sqrt{2}}\ut{cm/s^2}\\ &\approx -1.74471604990972\ut{cm/s^2}\\ &\approx -1.7\ut{cm/s^2}\\ a(2)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 2}{4}\)\\ &=-\frac{\pi ^2}{4}\ut{cm/s^2}\\ &\approx -2.46740110027234\ut{cm/s^2}\\ &\approx -2.5\ut{cm/s^2}\\ \end{aligned}