$$ \begin{cases}
t_0:\text{Drive}\\
t_1:\text{Brake Start}\\
t_2:\text{Stop}\\
\end{cases} $$
$$ \begin{cases}
v_{A0}&=80.5\ut{km/h}=\dfrac{805}{36}\ut{m/s}\\
\Sigma S_A&=63.4\ut{m}\\
v_{B0}&=48.3\ut{km/h}=\dfrac{161}{12}\ut{m/s}\\
\Sigma S_B&=28.9\ut{m}\\
\end{cases} $$
$$ 2aS=v^2-{v_0}^2,$$
$$ \begin{aligned}
2aS_{1\rarr2}&={v_2}^2-{v_1}^2\\
S_{1\rarr2}&=\frac{{0}^2-{v_0}^2}{2a}\\
&=-\frac{{v_0}^2}{2a}\\
\end{aligned} $$
$$ \begin{aligned}
\Sigma S &= S_{0\rarr1}+S_{1\rarr2}\\
&=v_0t_{0\rarr1}-\frac{{v_0}^2}{2a}
\end{aligned} $$
$$ \begin{cases}
\Sigma S_A &= v_{A0}t_{0\rarr1}-\dfrac{{v_{A0}}^2}{2a}\\
\Sigma S_B &= v_{B0}t_{0\rarr1}-\dfrac{{v_{B0}}^2}{2a}
\end{cases} $$
$$ \begin{cases}
63.4 &= \(\dfrac{805}{36}\)t_{0\rarr1}-\dfrac{\(\frac{805}{36}\)^2}{2a}\\
28.9 &= \(\dfrac{161}{12}\)t_{0\rarr1}-\dfrac{\(\frac{161}{12}\)^2}{2a}
\end{cases} $$
$$ \begin{cases}
a&= -\cfrac{648025}{98712}\ut{m/s^2}\\
t_{0\rarr1}&= \cfrac{651}{575}\ut{s}\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
t_{0\rarr1}&= \cfrac{651}{575}\ut{s}\\
&\approx 1.132173913043478\ut{s}\\
&\approx 1.13\ut{s}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\Ans &= \abs{a}\\
&= \abs{-\frac{648025}{98712}}\ut{m/s^2}\\
&\approx 6.564804684334225\ut{m/s^2}\\
&\approx 6.56\ut{m/s^2}\\
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-44 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |
---|---|
2-43 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |
2-41 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.16 |
2-40 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |
2-39 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |