$$ \begin{cases}
S_A&=-40.0\ut{m}\\
a_B&=1.50\ut{m/s^2}\\
v_2&=-3.00\ut{m/s}\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$\ab{a}$$
$$S=v_0t+\frac{1}{2}at^2,$$
$$ \begin{aligned}
S_A&=v_0t_A+\frac{1}{2}a_A{t_A}^2\\
-40&=(0)t_A+\frac{1}{2}(-g){t_A}^2\\
\end{aligned} $$
$$\therefore t_A=4\sqrt{\frac{5}{g}}$$
$$2aS=v^2-{v_0}^2,$$
$$ \begin{aligned}
2(a_A)(S_A)&={v_1}^2-{v_0}^2\\
2(-g)(-40)&={v_1}^2-{0}^2\\
\end{aligned} $$
$$\therefore v_1=-4\sqrt{5g}$$
$$ v=v_0+at,$$
$$ \begin{aligned}
v_2&=v_1+(a_B)t_B,\\
-3&=(-4\sqrt{5g})+(1.5)t_B,\\
\end{aligned} $$
$$\therefore t_B=\frac{8 }{3}\sqrt{5g}-2$$
$$ \begin{aligned}
\Ans&=\Sigma t\\
&=t_A+t_B\\
&=4\sqrt{\frac{5}{g}}+\frac{8 }{3}\sqrt{5g}-2\\
&=\(\frac{226133 }{15}\sqrt{\frac{2}{980665}}-2\)\ut{s}\\
&\approx 19.52917288841768\ut{s}\\
&\approx 19.5\ut{s}
\end{aligned} $$
$$\ab{b}$$
$$ S=vt-\frac{1}{2}at^2, $$
$$ \begin{aligned}
S_B&=v_2t_B-\frac{1}{2}a_B{t_B}^2\\
&=(-3)\(\frac{8 }{3}\sqrt{5g}-2\)-\frac{1}{2}(1.5)\(\frac{8 }{3}\sqrt{5g}-2\)^2\\
&=3-\frac{80}{3}g\\
&=-\frac{193883}{750}\ut{m}\\
\end{aligned} $$
$$ \begin{aligned}
\Ans&=\abs{S_A+S_B}\\
&=\abs{(-40)+\(-\frac{193883}{750}\)}\ut{m}\\
&=\frac{223883}{750}\ut{m}\\
&\approx 298.5106666666667\ut{m}\\
&\approx 299\ut{m}
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |
---|---|
2-41 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.16 |
2-39 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |
2-38 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |
2-37 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |