$$y=(4.0\ut{cm})\sin\frac{\pi t}{4}$$
$$\ab{a}$$
$$ \begin{aligned}
\bar v_{0\rarr2}&=\frac{\Sigma \Delta y_{0\rarr2}}{\Sigma t_{0\rarr2}}\\
&=\frac{y(2)-y(0)}{2}\\
&=\frac{\(4\sin\dfrac{\pi\cdot2}{4}\)-\(4\sin\dfrac{\pi\cdot0 }{4}\)}{2}\\
&=\frac{\(4\)-\(0\)}{2}\ut{cm/s}\\
&=2\ut{cm/s}\\
&= 2.0\ut{cm/s}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
v&=\dxt{y}\\
&=\dt\(4\sin\frac{\pi t}{4}\)\\
&=\pi\cos\frac{\pi t}{4}\\
\end{aligned} $$
$$ \begin{aligned}
v(0)&=\pi\cos\(\frac{\pi\cdot0}{4}\)\\
&=\pi\\
&\approx 3.141592653589793\ut{cm/s}\\
&\approx 3.1\ut{cm/s}\\
v(1)&=\pi\cos\(\frac{\pi\cdot1}{4}\)\\
&=\frac{\pi}{\sqrt 2}\\
&\approx 2.221441469079183\ut{cm/s}\\
&\approx 2.2\ut{cm/s}\\
v(2)&=\pi\cos\(\frac{\pi\cdot2}{4}\)\\
&=0\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\bar a_{0\rarr2} &= \frac{\Sigma \Delta v}{\Sigma \Delta t}\\
&= \frac{v(2)-v(0)}{2}\\
&= \frac{(0)-(\pi)}{2}\ut{cm/s^2}\\
&= -\frac{\pi}{2}\ut{cm/s^2}\\
&\approx -1.570796326794897\ut{cm/s^2}\\
&\approx -1.6\ut{cm/s^2}\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
a&=\dxt{v}\\
&=\dt\(\pi\cos\frac{\pi t}{4}\)\\
&=-\frac{\pi ^2}{4} \sin \frac{\pi t}{4}\\
\end{aligned} $$
$$ \begin{aligned}
a(0)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 0}{4}\)\\
&=0\\
a(1)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 1}{4}\)\\
&=-\frac{\pi ^2}{4 \sqrt{2}}\ut{cm/s^2}\\
&\approx -1.74471604990972\ut{cm/s^2}\\
&\approx -1.7\ut{cm/s^2}\\
a(2)&=-\frac{\pi^2}{4} \sin\(\frac{\pi \cdot 2}{4}\)\\
&=-\frac{\pi ^2}{4}\ut{cm/s^2}\\
&\approx -2.46740110027234\ut{cm/s^2}\\
&\approx -2.5\ut{cm/s^2}\\
\end{aligned} $$
'11판 > 2. 직선운동' 카테고리의 다른 글
2-46 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |
---|---|
2-45 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |
2-43 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.17 |
2-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.01.16 |
2-41 할리데이 11판 솔루션 일반물리학 (1) | 2024.01.16 |