10판/2. 직선운동

2-26 할리데이 10판 솔루션 일반물리학

짱세디럭스 2019. 7. 24. 22:02

{v0=6.00×106[m/s]a=1.25×1014[m/s2]v=0 \begin{cases} v_0 &= 6.00\times10^6\ut{m/s} \\ a &= -1.25\times10^{14}\ut{m/s^2} \\ v &= 0 \end{cases}
(a) S=? S =? 2aS=v2v02, 2aS = v^2-v_0^2 , Ans=S=v2v022a=02(6.00×106[m/s])22(1.25×1014[m/s2])=18125[m]=0.144[m]=14.4[cm] \begin{aligned} \Ans &= S = \frac{v^2-v_0^2}{2a} \\ &= \frac{0^2-(6.00\times10^6\ut{m/s})^2}{2(-1.25\times10^{14}\ut{m/s^2})} \\ &= \frac{18}{125}\ut{m} \\ &= 0.144\ut{m} = 14.4\ut{cm} \end{aligned}
(b) x(t)=v0t+12at2=(6.00×106)t+12(1.25×1014)t2=(6.00×106)t+(6.25×1013)t2 \begin{aligned} x(t) &= v_0t+\frac{1}{2}at^2 \\ &= (6.00\times10^6)t+\frac{1}{2}(-1.25\times10^{14})t^2 \\ &= (6.00\times10^6)t+(-6.25\times 10^{13})t^2 \end{aligned} v(t)=x˙= ⁣dx ⁣dt= ⁣d ⁣dt{(6.00×106)t+(6.25×1013)t2}=6.00×106(1.25×1014)t \begin{aligned} v(t) &= \dot x = \dxt{x} \\ &= \dt\{ (6.00\times10^6)t+(-6.25\times 10^{13})t^2 \} \\ &= 6.00\times10^6 - (1.25\times10^{14})t \end{aligned}

x(t)
v(t)