11판/12. 평형과 탄성

12-5 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 6. 25. 18:25
{mg=413[N] \begin{cases} mg&=413\ut{N}\\ \end{cases} {ΣFx=0ΣFy=0Στ=0 \begin{cases} \Sigma F_x&=0\\ \Sigma F_y&=0\\ \Sigma \tau&=0\\ \end{cases} {0=NxTsinθ0=Ny+Tcosθmg0=mgLsin(2θ)TLsinθ \begin{cases} 0&=N_x-T\sin\theta\\ 0&=N_y+T\cos\theta-mg\\ 0&=mgL\sin\br{2\theta}-TL\sin\theta\\ \end{cases} (a)\ab{a} T=2mgcosθ=4133[N]715.3369835259463[N]715[N] \begin{aligned} T &=2 mg \cos\theta\\ &=413\sqrt3\ut{N}\\ &\approx 715.3369835259463\ut{N}\\ &\approx 715\ut{N}\\ \end{aligned} (b)\ab{b} Nx=mgsin(2θ)=41323[N]357.66849176297313[N]358[N] \begin{aligned} N_x &=mg \sin(2\theta)\\ &={413\over2}\sqrt3\ut{N}\\ &\approx 357.66849176297313\ut{N}\\ &\approx 358\ut{N}\\ \end{aligned} (c)\ab{c} Ny=mgcos(2θ)=4132[N]=206.5[N]207[N] \begin{aligned} N_y &=-mg \cos(2\theta)\\ &=-{413\over2}\ut{N}\\ &= -206.5\ut{N}\\ &\approx -207\ut{N}\\ \end{aligned}