$$ \begin{cases}
E_\text{Iron}&=200\times10^9\ut{N/m^2}\\
m&=210\ut{kg}\\
R&=1.20\ut{mm}\\
p&=2.00\ut{mm}\\
L_{A}&=2.50\ut{m}\\
L_{B}&=L_{A}+p\\
\Delta L_B&=\Delta L_A-p\\
\end{cases} $$
$${F\over A}=E\cdot{\Delta L\over L},$$
$$ \begin{cases}
0&=\Sigma F=T_A+T_B-mg\\
T_A&=E (\pi R^2)\cdot{\Delta L_A\over L_A}\\
T_B&=E (\pi R^2)\cdot{\Delta L_B\over L_B}\\
\end{cases} $$
$$ \begin{aligned}
\Delta L_A&=\frac{{p E\pi R^2+mg(L_A+p)}}{ E \pi R^2(2 L_A+p)}L_A,\\
&=\br{\frac{2919 g}{3201280 \pi }+\frac{5}{5002}}\ut{m}\\
&\approx 3.845903854320749\times10^{-3}\ut{m}\\
&\approx 3.85\times10^{-3}\ut{m}\\
&\approx 3.85\ut{mm}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
T_A&=E (\pi R^2)\cdot{\Delta L_A\over L_A}\\
&=\frac{90 (2919 g+3200 \pi )}{2501}\ut{N}\\
&\approx 1.391876731600904\times10^3\ut{N}\\
&\approx 1.39\times10^3\ut{N}\\
&\approx 1.39\ut{kN}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
T_B
&=E (\pi R^2)\cdot{\Delta L_B\over L_B}\\
&=E (\pi R^2)\cdot{\Delta L_A-p\over L_{A}+p}\\
&=\frac{1500 (175 g-192 \pi )}{2501}\ut{N}\\
&\approx 667.5197683990962\ut{N}\\
&\approx 668\ut{N}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
0&=\Sigma \tau\\
&=d_A T_A-d_BT_B,
\end{aligned} $$
$$ \begin{aligned}
{d_A\over d_B}
&={T_B\over T_A}\\
&=\frac{\frac{1500 (175 g-192 \pi )}{2501}}{\frac{90 (2919 g+3200 \pi )}{2501}}\\
&=\frac{8750 g-9600 \pi }{8757 g+9600 \pi }\\
&\approx 0.4795825328808613\\
&\approx 0.480\\
\end{aligned} $$
'11판 > 12. 평형과 탄성' 카테고리의 다른 글
12-9 할리데이 11판 솔루션 일반물리학 (0) | 2024.06.28 |
---|---|
12-8 할리데이 11판 솔루션 일반물리학 (0) | 2024.06.26 |
12-6 할리데이 11판 솔루션 일반물리학 (0) | 2024.06.25 |
12-5 할리데이 11판 솔루션 일반물리학 (0) | 2024.06.25 |
12-4 할리데이 11판 솔루션 일반물리학 (0) | 2024.06.25 |