11판/12. 평형과 탄성

12-8 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 6. 26. 16:28
(a)\ab{a} com(1)=L2La1,\com(1)={L\over2}\le L-a_1, a1L2(1) \begin{aligned} a_1\le{L\over2}\taag1 \end{aligned} max(a1)=L2\therefore \max(a_1)={L\over2} (b)\ab{b} com(12)=L+a12La2,\com(12)={L+a_1\over2}\le L-a_2, a2La12(2) \begin{aligned} a_2\le{L-a_1\over2}\taag2 \end{aligned} max(a2)=L2(a1=0)\therefore \max(a_2)={L\over2}\\(a_1=0) (c)\ab{c} com(123)=L+a1+a22La3,\com(123)={L+a_1+a_2\over2}\le L-a_3, a3La1a22(3) \begin{aligned} a_3\le{L-a_1-a_2\over2}\taag3 \end{aligned} max(a3)=L2(a1=0,a2=0)\therefore \max(a_3)={L\over2}\\(a_1=0, a_2=0) (d)\ab{d} com(1234)=L+a1+a2+a32La4,\com(1234)={L+a_1+a_2+a_3\over2}\le L-a_4, a4La1a2a32(4) \begin{aligned} a_4\le{L-a_1-a_2-a_3\over2}\taag4 \end{aligned} max(a4)=L2(a1=0,a2=0,a3=0)\therefore \max(a_4)={L\over2}\\(a_1=0, a_2=0,a_3=0) (e)\ab{e} h=a1+a2+a3+a4,h=a_1+a_2+a_3+a_4, ha1+La12+La1a22+La1a2a32h\le a_1+{L-a_1\over2}+{L-a_1-a_2\over2}+{L-a_1-a_2-a_3\over2}\\ ha1+7L8h\le{a_1+7L\over8} h1516L h\le{15\over16}L\\ max(h)=1516L(a1=L2,a2=L4,a3=L8,a4=L16)\therefore \max(h)={15\over16}L\\\br{a_1={L\over2}, a_2={L\over4},a_3={L\over8},a_4={L\over16}}