11판/9. 질량중심과 선운동량

9-28 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 4. 20. 12:49
{m1=200[g]=0.2[kg]v1i=3.00[m/s]m2=400[g]=0.4[kg]v2i=0 \begin{cases} m_1&=200\ut{g}=0.2\ut{kg}\\ v_{1i}&=3.00\ut{m/s}\\ m_2&=400\ut{g}=0.4\ut{kg}\\ v_{2i}&=0\\ \end{cases} put {vin=v1iv2i=v1ivout=v1fv2f \put\begin{cases} \vec v_{\text{in}}&=\vec v_{1i}-\vec v_{2i}=v_{1i}\\ \vec v_{\text{out}}&=\vec v_{1f}-\vec v_{2f}\\ \end{cases} ΔΣP=0,\Delta \Sigma \vec P=0, m1v1i+m2v2i=m1v1f+m2v2fm_1v_{1i}+m_2v_{2i}=m_1v_{1f}+m_2v_{2f} J=ΔP=m1v1fm1v1i=m1(v1fv1i)=m1m2m1+m2(voutvin)=215(voutvin) \begin{aligned} J&=\Delta \vec P\\ &=m_1v_{1f}-m_1v_{1i}\\ &=m_1(v_{1f}-v_{1i})\\ &=\frac{m_1m_2}{m_1+m_2}(v_{\text{out}}-v_{\text{in}})\\ &=\frac{2}{15}(v_{\text{out}}-v_{\text{in}})\\ \end{aligned} (a)\ab{a} Elastic Collisionvin+vout=0, \text{Elastic Collision}\Harr\vec v_{\text{in}}+ \vec v_{\text{out}}=0, J=215(2vin)=45[Ns]=0.8[Ns]=800[mNs] \begin{aligned} \abs{J}&=\abs{\frac{2}{15}(-2v_{\text{in}})}\\ &=\frac{4}{5}\ut{N\cdot s}\\ &=0.8\ut{N\cdot s}\\ &=800\ut{mN\cdot s}\\ \end{aligned} (b)\ab{b} Perfectly Inelastic Collisionvout=0, \text{Perfectly Inelastic Collision}\Harr\vec v_{\text{out}}=0, J=215(vin)=25[Ns]=0.4[Ns]=400[mNs] \begin{aligned} \abs{J}&=\abs{\frac{2}{15}(-v_{\text{in}})}\\ &=\frac{2}{5}\ut{N\cdot s}\\ &=0.4\ut{N\cdot s}\\ &=400\ut{mN\cdot s}\\ \end{aligned}