$$ \begin{cases}
m_A&=2.00\times10^{-3}\ut{kg}\\
\vec F_A&=4.00\i+5.00\j\ut{N}\\
m_B&=4.00\times 10^{-3}\ut{kg}\\
\vec F_B&=2.00\i-4.00\j\ut{N}\\
v_0&=0\\
t&=2.00\ut{ms}=2\times10^{-3}\ut{s}
\end{cases} $$
$$r_\com=\frac{\Sigma rm}{M},$$
$$ \begin{aligned}
\vec a_\com&=\dytt{\vec r_\com}\\
&=\dtt\(\frac{\Sigma \vec rm}{M}\)\\
&=\frac{1}{M}\sum \dytt{\vec rm}\\
&=\frac{1}{M}\sum m\dytt{\vec r}\\
&=\frac{1}{M}\sum (m\vec a)\\
&=\frac{\Sigma \vec F}{M}\\
&=\frac{\vec F_A+\vec F_B}{m_A+m_B}\\
&=10^3\i+\frac{500}{3}\j\ut{m/s^2}
\end{aligned} $$
$$ \begin{aligned}
\vec v_\com&=\vec v_0+\Delta \vec v\\
&=\vec v_0+\int_0^t \vec a \dd t\\
&=\vec a t\\
\end{aligned} $$
$$ \begin{aligned}
\Delta \vec r_\com&=\int_0^t \vec v\dd t\\
&=\int_0^t (\vec a t)\dd t\\
&=\frac{1}{2}\vec a t^2\\
&=\(2\i+\frac{1}{3}\j\)\times10^{-3}\ut{m}\\
&=2\i+\frac{1}{3}\j\ut{mm}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
\Delta r_\com&=\sqrt{2^2+\(\frac{1}{3}\)^2}\\
&=\frac{\sqrt{37}}{3}\ut{mm}\\
&\approx 2.0275875100994063\ut{mm}\\
&\approx 2.03\ut{mm}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\theta&=\tan^{-1}\frac{\frac{1}{3}}{2}\\
&\approx 0.16514867741462683\ut{rad}\\
&\approx 0.165\ut{rad}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\KE&=\frac{1}{2}mv^2\\
&=\frac{1}{2}M(at)^2\\
&=\frac{1}{2}Ma^2t^2\\
&=\frac{37}{3000}\ut{J}\\
&\approx 0.012333333333333333\ut{J}\\
&\approx 1.23\times10^{-2}\ut{J}\\
&\approx 12.3\ut{mJ}\\
\end{aligned} $$
'11판 > 9. 질량중심과 선운동량' 카테고리의 다른 글
9-28 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.20 |
---|---|
9-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.20 |
9-25 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.19 |
9-24 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.19 |
9-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.18 |