$$ \put \begin{cases}
m_A=m_1=m\\
m_B=m_2=2m\\
M=m_A+m_B=3m
\end{cases} $$
$$ \begin{cases}
h&=2.50\ut{m}\\
m_B&=2.00m_A=2m\\
\mu&=0.600\\
\end{cases} $$
$$ \put \begin{cases}
0:\text{Start}\\
1:\text{A Landing Before A B Crash}\\
2:\text{After A B Crash}\\
3:\text{Stop}
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\GE : \text{Gravitational Potential Energy}\\
\TE : \text{Thermal Energy}\\
\end{cases} $$
$$\Sigma \Delta E=0,$$
$$ \begin{aligned}
\KE_{A1}&=\GE_{A0}\\
\frac{1}{2}m{v_1}^2&=mgh_0\\
{v_1}^2&=2gh_0\taag1\\
\end{aligned} $$
$$ \put \begin{cases}
v_{\text{in}}&=v_{A1}-v_{B1}=v_1\\
v_{\text{out}}&=v_{A2}-v_{B2}\\
\end{cases} $$
$$\Delta \Sigma \vec P=0,$$
$$ \begin{aligned}
m_Av_1&=m_Av_{A2}+m_Bv_{B2}\\
v_{B2}&=\frac{m_A}{M}(v_{\text{in}}-v_{\text{out}})\taag2
\end{aligned} $$
$$\Sigma \Delta E=0,$$
$$ \begin{aligned}
\TE&=\KE\\
fd&=\frac{1}{2}m{v_{B2}}^2\\
\mu m g d &=\frac{1}{2}m{v_{B2}}^2\\
\end{aligned} $$
$$ \begin{aligned}
d &=\frac{{v_{B2}}^2}{2\mu g}\\
&=\(\frac{m_A}{M}\)^2\cdot\frac{(v_{\text{in}}-v_{\text{out}})^2}{2\mu g}\\
&=\frac{5}{54 g}(v_{\text{in}}-v_{\text{out}})^2\\
\end{aligned} $$
$$\ab{a}$$
$$ \text{Elastic Collision}\Harr\vec v_{\text{in}}+ \vec v_{\text{out}}=0,$$
$$ \begin{aligned}
d&=\frac{5}{54 g}(v_{\text{in}}-v_{\text{out}})^2\\
&=\frac{5}{54 g}(v_{\text{in}}+v_{\text{in}})^2\\
&=\frac{5}{54 g}(2v_1)^2\\
&=\frac{20}{27}h\\
&=\frac{50}{27}\ut{m}\\
&\approx 1.8518518518518519\ut{m}\\
&\approx 1.85\ut{m}\\
\end{aligned} $$
$$\ab{b}$$
$$ \text{Perfectly Inelastic Collision}\Harr\vec v_{\text{out}}=0,$$
$$ \begin{aligned}
d&=\frac{5}{54 g}(v_{\text{in}}-v_{\text{out}})^2\\
&=\frac{5}{54 g}{v_1}^2\\
&=\frac{5}{27}h\\
&=\frac{25}{54}\ut{m}\\
&\approx 0.46296296296296297\ut{m}\\
&\approx 0.463\ut{m}\\
&\approx 46.3\ut{cm}\\
\end{aligned} $$
'11판 > 9. 질량중심과 선운동량' 카테고리의 다른 글
9-23 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.18 |
---|---|
9-22 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.18 |
9-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.17 |
9-19 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.17 |
9-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.17 |