11판/9. 질량중심과 선운동량

9-19 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 4. 17. 21:28
{mA=mB=m=500[g]xA=0xB=50[mm] \begin{cases} m_A&=m_B=m=500\ut{g}\\ x_A&=0\\ x_B&=50\ut{mm}\\ \end{cases} rcom=ΣrmM,r_\com=\frac{\Sigma rm}{M}, xcom=ΣxmM=xAmA+xBmB2m=mB2mxB \begin{aligned} x_\com&=\frac{\Sigma xm}{M}\\ &=\frac{x_Am_A+x_Bm_B}{2m}\\ &=\frac{m_B}{2m}x_B\\ \end{aligned} (a)\ab{a} xcom=mB2mxB=m2mxB=xB2=25[mm] \begin{aligned} x_\com&=\frac{m_B}{2m}x_B\\ &=\frac{m}{2m}x_B\\ &=\frac{x_B}{2}\\ &=25\ut{mm} \end{aligned} (b)\ab{b} {mA=mΔmmB=m+ΔmΔm=20[g] \begin{cases} m_A&=m-\Delta m\\ m_B&=m+\Delta m\\ \Delta m&=20\ut{g}\\ \end{cases} xcom=mB2mxB=m+Δm2mxB=26[mm] \begin{aligned} x_\com&=\frac{m_B}{2m}x_B\\ &=\frac{m+\Delta m}{2m}x_B\\ &=26\ut{mm}\\ \end{aligned} (c,d)\ab{c,d} {mA=mΔmmB=m+ΔmΔm=20[g] \begin{cases} m_A&=m-\Delta m\\ m_B&=m+\Delta m\\ \Delta m&=20\ut{g}\\ \end{cases} {ΣFA=mAaAΣFB=mBaBaA=aB=a \begin{cases} \Sigma F_A&=m_Aa_A\\ \Sigma F_B&=m_Ba_B\\ a_A&=-a_B=a \end{cases} {TmAg=mAaTmBg=mB(a) \begin{cases} T-m_Ag&=m_Aa\\ T-m_Bg&=m_B(-a)\\ \end{cases} a=mBmAMg=(m+Δm)(mΔm)2mg=Δmmg \begin{aligned} a&=\frac{m_B-m_A}{M}g\\ &=\frac{(m+\Delta m)-(m-\Delta m)}{2m}g\\ &=\frac{\Delta m}{m}g\\ \end{aligned} acom= ⁣d2rcom ⁣dt2= ⁣d2 ⁣dt2(ΣrmM)=1M( ⁣d2rm ⁣dt2)=1M(m ⁣d2r ⁣dt2)=1M(ma)=ΣmaM=mAaA+mBaBM=mAa+mB(a)M={(mΔm)(m+Δm)}a2m=(2Δm)2mΔmmg=(Δmm)2g=g625=0.01569064[m/s2]=15.69064[mm/s2]16[mm/s2] \begin{aligned} a_\com&=\dytt{r_\com}\\ &=\dtt\(\frac{\Sigma rm}{M}\)\\ &=\frac{1}{M}\sum \(\dytt{rm}\)\\ &=\frac{1}{M}\sum \(m\dytt{r}\)\\ &=\frac{1}{M}\sum \(ma\)\\ &=\frac{\Sigma ma}{M}\\ &=\frac{m_Aa_A+m_Ba_B}{M}\\ &=\frac{m_Aa+m_B(-a)}{M}\\ &=\frac{\bra{(m-\Delta m)-(m+\Delta m)}a}{2m}\\ &=\frac{(-2\Delta m)}{2m}\cdot\frac{\Delta m}{m}g\\ &=-\(\frac{\Delta m}{m}\)^2g\\ &=-\frac{g}{625}\\ &=-0.01569064\ut{m/s^2}\\ &= -15.69064\ut{mm/s^2}\\ &\approx -16\ut{mm/s^2}\\ \end{aligned} (c)\ab{c} Down\text{Down} (d)\ab{d} 16[mm/s2]-16\ut{mm/s^2}