$$ \begin{cases}
m_A&=m_B=m=500\ut{g}\\
x_A&=0\\
x_B&=50\ut{mm}\\
\end{cases} $$
$$r_\com=\frac{\Sigma rm}{M},$$
$$ \begin{aligned}
x_\com&=\frac{\Sigma xm}{M}\\
&=\frac{x_Am_A+x_Bm_B}{2m}\\
&=\frac{m_B}{2m}x_B\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
x_\com&=\frac{m_B}{2m}x_B\\
&=\frac{m}{2m}x_B\\
&=\frac{x_B}{2}\\
&=25\ut{mm}
\end{aligned} $$
$$\ab{b}$$
$$ \begin{cases}
m_A&=m-\Delta m\\
m_B&=m+\Delta m\\
\Delta m&=20\ut{g}\\
\end{cases} $$
$$ \begin{aligned}
x_\com&=\frac{m_B}{2m}x_B\\
&=\frac{m+\Delta m}{2m}x_B\\
&=26\ut{mm}\\
\end{aligned} $$
$$\ab{c,d}$$
$$ \begin{cases}
m_A&=m-\Delta m\\
m_B&=m+\Delta m\\
\Delta m&=20\ut{g}\\
\end{cases} $$
$$ \begin{cases}
\Sigma F_A&=m_Aa_A\\
\Sigma F_B&=m_Ba_B\\
a_A&=-a_B=a
\end{cases} $$
$$ \begin{cases}
T-m_Ag&=m_Aa\\
T-m_Bg&=m_B(-a)\\
\end{cases} $$
$$ \begin{aligned}
a&=\frac{m_B-m_A}{M}g\\
&=\frac{(m+\Delta m)-(m-\Delta m)}{2m}g\\
&=\frac{\Delta m}{m}g\\
\end{aligned} $$
$$ \begin{aligned}
a_\com&=\dytt{r_\com}\\
&=\dtt\(\frac{\Sigma rm}{M}\)\\
&=\frac{1}{M}\sum \(\dytt{rm}\)\\
&=\frac{1}{M}\sum \(m\dytt{r}\)\\
&=\frac{1}{M}\sum \(ma\)\\
&=\frac{\Sigma ma}{M}\\
&=\frac{m_Aa_A+m_Ba_B}{M}\\
&=\frac{m_Aa+m_B(-a)}{M}\\
&=\frac{\bra{(m-\Delta m)-(m+\Delta m)}a}{2m}\\
&=\frac{(-2\Delta m)}{2m}\cdot\frac{\Delta m}{m}g\\
&=-\(\frac{\Delta m}{m}\)^2g\\
&=-\frac{g}{625}\\
&=-0.01569064\ut{m/s^2}\\
&= -15.69064\ut{mm/s^2}\\
&\approx -16\ut{mm/s^2}\\
\end{aligned} $$
$$\ab{c}$$
$$\text{Down}$$
$$\ab{d}$$
$$-16\ut{mm/s^2}$$
'11판 > 9. 질량중심과 선운동량' 카테고리의 다른 글
9-21 할리데이 11판 솔루션 일반물리학 (2) | 2024.04.18 |
---|---|
9-20 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.17 |
9-18 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.17 |
9-17 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.16 |
9-16 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.16 |