$$ \begin{cases}
0:\text{Start}\\
1:x_{1}=2.0\ut{m}\\
2:x_{2}=14\ut{m}\\
\end{cases} $$
$$ \begin{cases}
v_0&=0\\
v_1&=4.2\ut{m/s}\\
v_2&=0\\
\end{cases} $$
$$ \begin{cases}
m&=0.69\ut{kg}\\
a_{0\rarr1}&=\Cons\\
a_{1\rarr2}&=0\\
f_{0\rarr2}&=\Cons\\
\end{cases} $$
$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\TE : \text{Thermal Energy}\\
\end{cases} $$
$$\ab{a}$$
$$\Sigma \Delta E=0,$$
$$\Delta \KE+\Delta \TE=0$$
$$ \begin{aligned}
\Delta \TE_{1\rarr2} &=-\Delta \KE_{1\rarr2}\\
&=-\Delta \(\frac{1}{2}mv^2\)_{1\rarr2}\\
&=-\frac{1}{2}m\Delta \(v^2\)_{1\rarr2}\\
&=\frac{m}{2}\({v_1}^2-{v_2}^2\)\\
&=\frac{30429}{5000}\ut{J}\\
&= 6.0858\ut{J}\\
&\approx 6.1\ut{J}
\end{aligned} $$
$$\ab{b}$$
$$\Delta \TE=fd,$$
$$ \begin{aligned}
\Delta \TE_{0\rarr2}&=\Delta \TE_{0\rarr1}+\Delta \TE_{1\rarr2}\\
&=\Delta \TE_{1\rarr2}\cdot\frac{d_{0\rarr1}}{d_{1\rarr2}} +\Delta \TE_{1\rarr2}\\
&=\Delta \TE_{1\rarr2}\cdot\(\frac{d_{0\rarr1}}{d_{1\rarr2}} +1\)\\
&=7.1001\ut{J}\\
&\approx 7.1\ut{J}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
W_{0\rarr2}&=\Delta \KE_{0\rarr2}+\Delta \TE_{0\rarr2},\\
&=\Delta \TE_{0\rarr2}\\
&\approx 7.1\ut{J}\\
\end{aligned} $$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-44 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.04 |
---|---|
8-43 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.04 |
8-41 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-40 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-39 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |