$$ \put \begin{cases}
\KE : \text{Kinetic Energy}\\
\PE : \text{Potential Energy}\\
\end{cases} $$
$$ \begin{cases}
m&=1\ut{kg}\\
F(x)&=-3.0x-5.0x^2\ut{N}\\
\PE_0&=0\\
\end{cases} $$
$$\ab{a}$$
$$ \begin{aligned}
\PE(x)&=\PE(0)+\Delta \PE\\
&=\PE(0)+ \int_0^xF\dd x\\
&=0+\int_0^x(-3x-5x^2)\dd x\\
&=-\frac{3}{2}x^2-\frac{5}{3}x^3\\
\end{aligned} $$
$$ \begin{aligned}
\PE(2.0\ut{m})&=-\frac{3}{2}(2)^2-\frac{5}{3}(2)^3\\
&=-\frac{58}{3}\ut{J}\\
&\approx -19.333333333333332\ut{J}\\
&\approx -19\ut{J}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{cases}
\vec v_5&=-4.0\ut{m/s}
\end{cases} $$
$$ \begin{aligned}
\KE_5&=\frac{1}{2}mv^2\\
&=8\ut{J}
\end{aligned} $$
$$ \begin{aligned}
\Delta \PE_{5\rarr0}
&=\int_5^0(-3x-5x^2)\dd x\\
&=\int_0^5(3x+5x^2)\dd x\\
&=\frac{1475}{6}\ut{J}\\
&\approx 245.83333333333334\ut{J}\\
&\approx 2.5\times 10^2\ut{J}\\
\end{aligned} $$
$$\KE_5 \lt \Delta \PE_{5\rarr0},$$
$$\therefore \text{Impossible to Arrive}$$
$$\ab{c-a}$$
$$ \begin{cases}
\PE(0)&=-8.0\ut{J}
\end{cases} $$
$$ \begin{aligned}
\PE(x)&=\PE(0)+\Delta \PE\\
&=\PE(0)+ \int_0^xF\dd x\\
&=-8+\int_0^x(-3x-5x^2)\dd x\\
&=-8-\frac{3}{2}x^2-\frac{5}{3}x^3\\
\end{aligned} $$
$$ \begin{aligned}
\PE(2.0\ut{m})&=-8-\frac{3}{2}(2)^2-\frac{5}{3}(2)^3\\
&=-\frac{82}{3}\ut{J}\\
&\approx -27.333333333333332\ut{J}\\
&\approx -27\ut{J}\\
\end{aligned} $$
$$\ab{c-b}$$
$$ \begin{cases}
\vec v_5&=-4.0\ut{m/s}
\end{cases} $$
$$ \begin{aligned}
\KE_5&=\frac{1}{2}mv^2\\
&=8\ut{J}
\end{aligned} $$
$$ \begin{aligned}
\Delta \PE_{5\rarr0}
&=\int_5^0(-3x-5x^2)\dd x\\
&=\int_0^5(3x+5x^2)\dd x\\
&=\frac{1475}{6}\ut{J}\\
&\approx 245.83333333333334\ut{J}\\
&\approx 2.5\times 10^2\ut{J}\\
\end{aligned} $$
$$\KE_5 \lt \Delta \PE_{5\rarr0},$$
$$\therefore \text{Impossible to Arrive}$$
'11판 > 8. 퍼텐셜에너지와 에너지 보존' 카테고리의 다른 글
8-42 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.04 |
---|---|
8-41 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-39 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-38 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |
8-37 할리데이 11판 솔루션 일반물리학 (0) | 2024.04.03 |