11판/8. 퍼텐셜에너지와 에너지 보존

8-43 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 4. 4. 17:55
put {U:Potential Energy \put \begin{cases} U : \text{Potential Energy}\\ \end{cases} {F(x)=Gm1m2x2U()=0 \begin{cases} F(x)&=G\cfrac{m_1m_2}{x^2}\\ U(\infin)&=0\\ \end{cases} {x>0x1=x1x2=x1+d \begin{cases} x&\gt0\\ x_1&=x_1\\ x_2&=x_1+d \end{cases} (a)\ab{a} U(x)=U()+xF(x) ⁣dx=0+xGm1m2x2 ⁣dx=Gm1m2x1x2 ⁣dx=Gm1m2[1x]x=Gm1m2(1x1)=Gm1m2(1x)=Gm1m2x \begin{aligned} U(x)&=U(\infin)+\int_{\infin}^xF(x)\dd x\\ &=0+\int_{\infin}^x G\frac{m_1m_2}{x^2}\dd x\\ &=Gm_1m_2\int_{\infin}^x \frac{1}{x^2}\dd x\\ &=-Gm_1m_2\[\frac{1}{x}\]_{\infin}^x\\ &=-Gm_1m_2\(\frac{1}{x}-\frac{1}{\infin}\)\\ &=-Gm_1m_2\(\frac{1}{x}\)\\ &=-G\frac{m_1m_2}{x}\\ \end{aligned} (b)\ab{b} Wx1x2=ΔUx1x2=U(x2)U(x1)=(Gm1m2x2)(Gm1m2x1)=Gm1m2(1x11x2)=Gm1m2(1x11x1+d)=Gm1m2x1dd+x1=U(x1)dd+x1 \begin{aligned} W_{x_1\rarr x_2}&=\Delta U_{x_1\rarr x_2}\\ &=U(x_2)-U(x_1)\\ &=\(-G\frac{m_1m_2}{x_2}\)-\(-G\frac{m_1m_2}{x_1}\)\\ &=Gm_1m_2\(\frac{1}{x_1}-\frac{1}{x_2}\)\\ &=Gm_1m_2\(\frac{1}{x_1}-\frac{1}{x_1+d}\)\\ &=G\frac{m_1m_2}{x_1}\cdot\frac{d}{d+{x_1}}\\ &=U(x_1)\cdot\frac{d}{d+{x_1}} \end{aligned}