$$ \begin{cases}
h&=6.20\ut{m}\\
v_0&=13.6\ut{m/s}\\
g&=9.80665\ut{m/s^2}\\
\end{cases} $$
$$ \begin{aligned}
2aS&=v^2-{v_0}^2,\\
2(-g)(h)&=(0)^2-{v_{y0}}^2\\
v_{y0}&=\sqrt{2gh}\\
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
\theta &= \sin^{-1}\frac{v_{y0}}{v_0}\\
&= \sin^{-1}\frac{\sqrt{2gh}}{13.6}\\
&= \sin^{-1}\frac{\sqrt{2\cdot6.2g}}{13.6}\\
&\approx 0.9455767031562586\ut{rad}\\
&\approx 0.946\ut{rad}\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
v&=v_0+at,\\
0&=v_{y0}+(-g)t\\
t&=\frac{\sqrt{2gh}}{g}\\
&=\sqrt{\frac{2h}{g}}\\
\end{aligned} $$
$$ \begin{aligned}
\Delta x &= v_x t\\
&=\sqrt{{v_0}^2-{v_{y0}}^2}t\\
&=\sqrt{{v_0}^2-2gh}\sqrt{\frac{2h}{g}}\\
&=\frac{2}{5} \sqrt{\frac{71672}{5g}-961}\\
&\approx 8.950548661002468\ut{m}\\
&\approx 8.95\ut{m}\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\vec v_H&=v_x\i\\
v_H&=v_x\\
&= \sqrt{{v_0}^2-{v_{y0}}^2}\\
&= \sqrt{{v_0}^2-2gh}\\
&= \sqrt{{13.6}^2-2g(6.2)}\\
&\approx 7.959744970788952\ut{m/s}\\
&\approx 7.96\ut{m/s}\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-32 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
---|---|
4-31 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
4-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
4-28 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
4-27 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.02 |