11판/4. 2차원 운동과 3차원 운동

4-32 할리데이 11판 솔루션 일반물리학

짱세디럭스 2024. 2. 5. 21:16
{R=4.00[m]T=20.0[s] \begin{cases} R&=4.00\ut{m}\\ T&=20.0\ut{s} \end{cases} O=Rj^=4j^ \begin{aligned} \vec O &= R\j\\ &= 4\j \end{aligned} ω=2πT=π10[rad/s] \begin{aligned} \omega &= \frac{2\pi}{T}\\ &=\frac{\pi}{10}\ut{rad/s} \end{aligned} R=Rcosθi^+Rsinθj^=Rcos(θ0+Δθ)i^+Rsin(θ0+Δθ)j^=Rcos(θ0+ωt)i^+Rsin(θ0+ωt)j^=4cos(π2+π10t)i^+4sin(π2+π10t)j^=4cosπ(t5)10i^+4sinπ(t5)10j^=4sinπt10i^4cosπt10j^ \begin{aligned} \vec R &= R\cos\theta\i+R\sin\theta\j\\ &= R\cos(\theta_0+\Delta\theta)\i+R\sin(\theta_0+\Delta\theta)\j\\ &= R\cos(\theta_0+\omega t)\i+R\sin(\theta_0+\omega t)\j\\ &= 4\cos\(-\frac{\pi}{2}+\frac{\pi}{10} t\)\i+4\sin\(-\frac{\pi}{2}+\frac{\pi}{10} t\)\j\\ &= 4\cos\frac{\pi(t-5)}{10}\i+4\sin\frac{\pi(t-5)}{10}\j\\ &= 4\sin\frac{\pi t}{10}\i-4\cos\frac{\pi t}{10}\j\\ \end{aligned} r=O+R,=4sinπt10i^+(44cosπt10)j^=4sinπt10i^+8sin2πt20j^ \begin{aligned} \vec r&=\vec O + \vec R,\\ &=4\sin\frac{\pi t}{10}\i+\(4-4\cos\frac{\pi t}{10}\)\j\\ &=4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\ \end{aligned} (a,b,c)\ab{a,b,c} r=(4sinπt10)2+(8sin2πt20)2=8sinπt20 \begin{aligned} r&=\sqrt{\(4\sin\frac{\pi t}{10}\)^2+\(8\sin^2\frac{\pi t}{20}\)^2}\\ &=\abs{8\sin\frac{\pi t}{20}} \end{aligned} θr=tan18sin2πt204sinπt10=tan1(tanπt20)=πt20 \begin{aligned} \theta_r&=\tan^{-1}\frac{8\sin^2\frac{\pi t}{20}}{4\sin\frac{\pi t}{10}}\\ &=\tan^{-1}\(\tan\frac{\pi t}{20}\)\\ &=\frac{\pi t}{20} \end{aligned} r(t)=r,θ=8sinπt20,πt20 \begin{aligned} \therefore \vec r(t)&=\la r,\theta \ra\\ &=\la\abs{8\sin\frac{\pi t}{20}},\frac{\pi t}{20}\ra \end{aligned} (a)\ab{a} r(5.00[s])=8sin5π20,5π20=42[m],π4[rad]5.656854249492381[m],0.7853981633974483[rad]5.66[m],0.785[rad] \begin{aligned} \vec r(5.00\ut{s})&=\la\abs{8\sin\frac{5\pi}{20}},\frac{5\pi}{20}\ra\\ &=\la4\sqrt2\ut{m},\frac{\pi}{4}\ut{rad}\ra\\ &\approx \la5.656854249492381\ut{m},0.7853981633974483\ut{rad}\ra\\ &\approx \la5.66\ut{m},0.785\ut{rad}\ra\\ \end{aligned} (b)\ab{b} r(7.50[s])=8sin7.5π20,7.5π20=8cosπ8[m],3π8[rad]7.391036260090294[m],1.178097245096172[rad]7.39[m],1.18[rad] \begin{aligned} \vec r(7.50\ut{s})&=\la\abs{8\sin\frac{7.5\pi}{20}},\frac{7.5 \pi }{20}\ra\\ &=\la8 \cos\frac{\pi }{8}\ut{m},\frac{3\pi}{8}\ut{rad}\ra\\ &\approx \la7.391036260090294\ut{m},1.178097245096172\ut{rad}\ra\\ &\approx \la7.39\ut{m},1.18\ut{rad}\ra\\ \end{aligned} (c)\ab{c} r(10.0[s])=8sin10π20,10π20=8[m],π2[rad]8[m],1.570796326794897[rad]8.00[m],1.57[rad] \begin{aligned} \vec r(10.0\ut{s})&=\la\abs{8\sin\frac{10\pi}{20}},\frac{10 \pi }{20}\ra\\ &=\la8\ut{m},\frac{\pi}{2}\ut{rad}\ra\\ &\approx \la8\ut{m},1.570796326794897\ut{rad}\ra\\ &\approx \la8.00\ut{m},1.57\ut{rad}\ra\\ \end{aligned} (d)\ab{d} r(t)=4sinπt10i^+8sin2πt20j^Δr=r(10)r(5)=(8j^)(4i^+4j^)=4i^+4j^[m]=42[m],3π4[rad]5.66[m],2.36[rad] \begin{aligned} \vec r(t)&= 4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\ \Delta \vec r &= \vec r(10)-\vec r(5)\\ &=(8\j)-(4\i+4\j)\\ &=-4\i+4\j\ut{m}\\ &=\la4\sqrt2\ut{m},\frac{3\pi}{4}\ut{rad}\ra\\ &\approx \la5.66\ut{m},2.36\ut{rad}\ra \end{aligned} (e)\ab{e} v=Δrt=4i^+4j^5[m/s]=425[m/s],3π4[rad]1.13[m/s],2.36[rad] \begin{aligned} \vec v&=\frac{\Delta \vec r }{t}\\ &=\frac{-4\i+4\j}{5}\ut{m/s}\\ &=\la\frac{4\sqrt2}{5}\ut{m/s},\frac{3\pi}{4}\ut{rad}\ra\\ &\approx\la1.13\ut{m/s},2.36\ut{rad}\ra\\ \end{aligned} (f,g)\ab{f,g} r=4sinπt10i^+8sin2πt20j^v(t)= ⁣dr(t) ⁣dt=25πcosπt10i^+25πsinπt10j^ \begin{aligned} \vec r&= 4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\ \vec v(t) &= \dxt{\vec r(t)}\\ &=\frac{2}{5}\pi\cos\frac{\pi t}{10}\i+\frac{2}{5}\pi\sin\frac{\pi t}{10}\j\\ \end{aligned} (f)\ab{f} v(5.00[s])=25πcosπ(5)10i^+25πsinπ(5)10j^=2π5j^[m/s]=2π5[m],π2[rad]1.26[m],1.57[rad] \begin{aligned} \vec v(5.00\ut{s})&=\frac{2}{5}\pi\cos\frac{\pi (5)}{10}\i+\frac{2}{5}\pi\sin\frac{\pi (5)}{10}\j\\ &=\frac{2\pi}{5}\j\ut{m/s}\\ &=\la\frac{2\pi}{5}\ut{m},\frac{\pi}{2}\ut{rad}\ra\\ &\approx\la1.26\ut{m},1.57\ut{rad}\ra \end{aligned} (g)\ab{g} v(10.0[s])=25πcosπ(10)10i^+25πsinπ(10)10j^=2π5i^[m/s]=2π5[m],π[rad]1.26[m],3.14[rad] \begin{aligned} \vec v(10.0\ut{s})&=\frac{2}{5}\pi\cos\frac{\pi (10)}{10}\i+\frac{2}{5}\pi\sin\frac{\pi (10)}{10}\j\\ &=-\frac{2 \pi }{5}\i\ut{m/s}\\ &=\la\frac{2\pi}{5}\ut{m},\pi\ut{rad}\ra\\ &\approx\la1.26\ut{m},3.14\ut{rad}\ra \end{aligned} (h,i)\ab{h,i} v=25πcosπt10i^+25πsinπt10j^a(t)= ⁣dv(t) ⁣dt=125π2sinπt10i^+125π2cosπt10j^ \begin{aligned} \vec v&= \frac{2}{5}\pi\cos\frac{\pi t}{10}\i+\frac{2}{5}\pi\sin\frac{\pi t}{10}\j\\ \vec a(t) &= \dxt{\vec v(t)}\\ &=-\frac{1}{25}\pi^2\sin\frac{\pi t}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi t}{10}\j\\ \end{aligned} (h)\ab{h} a(5.00[s])=125π2sinπ(5)10i^+125π2cosπ(5)10j^=π225i^=π225[m],π[rad]0.395[m],3.14[rad] \begin{aligned} \vec a(5.00\ut{s})&=-\frac{1}{25}\pi^2\sin\frac{\pi (5)}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi (5)}{10}\j\\ &=-\frac{\pi^2}{25}\i\\ &=\la\frac{\pi^2}{25}\ut{m},\pi\ut{rad}\ra\\ &\approx \la0.395\ut{m},3.14\ut{rad}\ra\\ \end{aligned} (i)\ab{i} a(10.0[s])=125π2sinπ(10)10i^+125π2cosπ(10)10j^=π225j^=π225[m],π2[rad]0.395[m],1.57[rad] \begin{aligned} \vec a(10.0\ut{s})&=-\frac{1}{25}\pi^2\sin\frac{\pi (10)}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi (10)}{10}\j\\ &=-\frac{\pi^2}{25}\j\\ &=\la\frac{\pi^2}{25}\ut{m},-\frac{\pi}{2}\ut{rad}\ra\\ &\approx \la0.395\ut{m},-1.57\ut{rad}\ra\\ \end{aligned}