$$ \begin{cases}
R&=4.00\ut{m}\\
T&=20.0\ut{s}
\end{cases} $$
$$ \begin{aligned}
\vec O &= R\j\\
&= 4\j
\end{aligned} $$
$$ \begin{aligned}
\omega &= \frac{2\pi}{T}\\
&=\frac{\pi}{10}\ut{rad/s}
\end{aligned} $$
$$ \begin{aligned}
\vec R &= R\cos\theta\i+R\sin\theta\j\\
&= R\cos(\theta_0+\Delta\theta)\i+R\sin(\theta_0+\Delta\theta)\j\\
&= R\cos(\theta_0+\omega t)\i+R\sin(\theta_0+\omega t)\j\\
&= 4\cos\(-\frac{\pi}{2}+\frac{\pi}{10} t\)\i+4\sin\(-\frac{\pi}{2}+\frac{\pi}{10} t\)\j\\
&= 4\cos\frac{\pi(t-5)}{10}\i+4\sin\frac{\pi(t-5)}{10}\j\\
&= 4\sin\frac{\pi t}{10}\i-4\cos\frac{\pi t}{10}\j\\
\end{aligned} $$
$$ \begin{aligned}
\vec r&=\vec O + \vec R,\\
&=4\sin\frac{\pi t}{10}\i+\(4-4\cos\frac{\pi t}{10}\)\j\\
&=4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\
\end{aligned} $$
$$\ab{a,b,c}$$
$$ \begin{aligned}
r&=\sqrt{\(4\sin\frac{\pi t}{10}\)^2+\(8\sin^2\frac{\pi t}{20}\)^2}\\
&=\abs{8\sin\frac{\pi t}{20}}
\end{aligned} $$
$$ \begin{aligned}
\theta_r&=\tan^{-1}\frac{8\sin^2\frac{\pi t}{20}}{4\sin\frac{\pi t}{10}}\\
&=\tan^{-1}\(\tan\frac{\pi t}{20}\)\\
&=\frac{\pi t}{20}
\end{aligned} $$
$$ \begin{aligned}
\therefore \vec r(t)&=\la r,\theta \ra\\
&=\la\abs{8\sin\frac{\pi t}{20}},\frac{\pi t}{20}\ra
\end{aligned} $$
$$\ab{a}$$
$$ \begin{aligned}
\vec r(5.00\ut{s})&=\la\abs{8\sin\frac{5\pi}{20}},\frac{5\pi}{20}\ra\\
&=\la4\sqrt2\ut{m},\frac{\pi}{4}\ut{rad}\ra\\
&\approx \la5.656854249492381\ut{m},0.7853981633974483\ut{rad}\ra\\
&\approx \la5.66\ut{m},0.785\ut{rad}\ra\\
\end{aligned} $$
$$\ab{b}$$
$$ \begin{aligned}
\vec r(7.50\ut{s})&=\la\abs{8\sin\frac{7.5\pi}{20}},\frac{7.5 \pi }{20}\ra\\
&=\la8 \cos\frac{\pi }{8}\ut{m},\frac{3\pi}{8}\ut{rad}\ra\\
&\approx \la7.391036260090294\ut{m},1.178097245096172\ut{rad}\ra\\
&\approx \la7.39\ut{m},1.18\ut{rad}\ra\\
\end{aligned} $$
$$\ab{c}$$
$$ \begin{aligned}
\vec r(10.0\ut{s})&=\la\abs{8\sin\frac{10\pi}{20}},\frac{10 \pi }{20}\ra\\
&=\la8\ut{m},\frac{\pi}{2}\ut{rad}\ra\\
&\approx \la8\ut{m},1.570796326794897\ut{rad}\ra\\
&\approx \la8.00\ut{m},1.57\ut{rad}\ra\\
\end{aligned} $$
$$\ab{d}$$
$$ \begin{aligned}
\vec r(t)&= 4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\
\Delta \vec r &= \vec r(10)-\vec r(5)\\
&=(8\j)-(4\i+4\j)\\
&=-4\i+4\j\ut{m}\\
&=\la4\sqrt2\ut{m},\frac{3\pi}{4}\ut{rad}\ra\\
&\approx \la5.66\ut{m},2.36\ut{rad}\ra
\end{aligned} $$
$$\ab{e}$$
$$ \begin{aligned}
\vec v&=\frac{\Delta \vec r }{t}\\
&=\frac{-4\i+4\j}{5}\ut{m/s}\\
&=\la\frac{4\sqrt2}{5}\ut{m/s},\frac{3\pi}{4}\ut{rad}\ra\\
&\approx\la1.13\ut{m/s},2.36\ut{rad}\ra\\
\end{aligned} $$
$$\ab{f,g}$$
$$ \begin{aligned}
\vec r&= 4\sin\frac{\pi t}{10}\i+8\sin^2\frac{\pi t}{20}\j\\
\vec v(t) &= \dxt{\vec r(t)}\\
&=\frac{2}{5}\pi\cos\frac{\pi t}{10}\i+\frac{2}{5}\pi\sin\frac{\pi t}{10}\j\\
\end{aligned} $$
$$\ab{f}$$
$$ \begin{aligned}
\vec v(5.00\ut{s})&=\frac{2}{5}\pi\cos\frac{\pi (5)}{10}\i+\frac{2}{5}\pi\sin\frac{\pi (5)}{10}\j\\
&=\frac{2\pi}{5}\j\ut{m/s}\\
&=\la\frac{2\pi}{5}\ut{m},\frac{\pi}{2}\ut{rad}\ra\\
&\approx\la1.26\ut{m},1.57\ut{rad}\ra
\end{aligned} $$
$$\ab{g}$$
$$ \begin{aligned}
\vec v(10.0\ut{s})&=\frac{2}{5}\pi\cos\frac{\pi (10)}{10}\i+\frac{2}{5}\pi\sin\frac{\pi (10)}{10}\j\\
&=-\frac{2 \pi }{5}\i\ut{m/s}\\
&=\la\frac{2\pi}{5}\ut{m},\pi\ut{rad}\ra\\
&\approx\la1.26\ut{m},3.14\ut{rad}\ra
\end{aligned} $$
$$\ab{h,i}$$
$$ \begin{aligned}
\vec v&= \frac{2}{5}\pi\cos\frac{\pi t}{10}\i+\frac{2}{5}\pi\sin\frac{\pi t}{10}\j\\
\vec a(t) &= \dxt{\vec v(t)}\\
&=-\frac{1}{25}\pi^2\sin\frac{\pi t}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi t}{10}\j\\
\end{aligned} $$
$$\ab{h}$$
$$ \begin{aligned}
\vec a(5.00\ut{s})&=-\frac{1}{25}\pi^2\sin\frac{\pi (5)}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi (5)}{10}\j\\
&=-\frac{\pi^2}{25}\i\\
&=\la\frac{\pi^2}{25}\ut{m},\pi\ut{rad}\ra\\
&\approx \la0.395\ut{m},3.14\ut{rad}\ra\\
\end{aligned} $$
$$\ab{i}$$
$$ \begin{aligned}
\vec a(10.0\ut{s})&=-\frac{1}{25}\pi^2\sin\frac{\pi (10)}{10}\i+\frac{1}{25}\pi^2\cos\frac{\pi (10)}{10}\j\\
&=-\frac{\pi^2}{25}\j\\
&=\la\frac{\pi^2}{25}\ut{m},-\frac{\pi}{2}\ut{rad}\ra\\
&\approx \la0.395\ut{m},-1.57\ut{rad}\ra\\
\end{aligned} $$
'11판 > 4. 2차원 운동과 3차원 운동' 카테고리의 다른 글
4-34 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.06 |
---|---|
4-33 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.06 |
4-31 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
4-30 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |
4-29 할리데이 11판 솔루션 일반물리학 (0) | 2024.02.05 |